logo
Satellites align to create 'artificial total solar eclipse,' photos show

Satellites align to create 'artificial total solar eclipse,' photos show

Yahoo3 days ago

Two European satellites created an "artificial total solar eclipse" in space, the European Space Agency announced June 16, delivering data that will improve scientists' understanding of the sun and its atmosphere.
The agency said the satellites, named Coronagraph and Occulter, flew 429 feet apart in perfect formation for "several hours" without being controlled from the ground to create the artificial eclipse. The Proba-3 mission, according to the agency, helps scientists examine the sun's corona to study solar winds, the continuous flow of matter from the sun into outer space, and the workings of coronal mass ejections.
"It is exciting to see these stunning images validate our technologies in what is now the world's first precision formation flying mission," Dietmar Pilz, European Space Agency's director of technology, engineering, and quality, said in a news release.
The mission has created 10 artificial eclipses so far, with the longest being five hours, lead scientist Andrei Zhukov told The Associated Press.
"We almost couldn't believe our eyes," Zhukov, who works for the Royal Observatory of Belgium, told the news organization service. "This was the first try, and it worked. It was so incredible."
During the eclipses, the ASPIICS optical instrument on the Coronagraph captured images of the solar corona while the Occulter blocked out the sun's light.
The images were processed by the ASPIICS Science Operations Center at the Royal Observatory of Belgium, where a team of scientists created photos of the corona based on input from the scientific community.
"Current coronagraphs are no match for Proba-3, which will observe the sun's corona down almost to the edge of the solar surface. So far, this was only possible during natural solar eclipses," said Jorge Amaya, space weather modelling coordinator at the European Space Agency.
The agency added that the Proba-3 mission's images will help computer modeling of the sun's corona.
Amaya pointed to an already completed simulation of Proba-3's first observations, and the agency said that the data could help "offer a comprehensive image of the solar phenomena impacting our planet and help citizens and industry prepare against them."
This article originally appeared on USA TODAY: European satellites create an artificial eclipse in space

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Start-up in bid to prove UK leads in space tech
Start-up in bid to prove UK leads in space tech

Yahoo

time3 hours ago

  • Yahoo

Start-up in bid to prove UK leads in space tech

A UK-built spacecraft engine that runs on metal is preparing for its first test in space, in a mission that could pave the way for longer-lasting, more flexible satellites. The plasma thruster, developed by Oxfordshire start-up Magdrive, heats tiny bits of solid metal into a hot gas to produce powerful bursts of thrust. In the future it could allow satellites to recycle parts of themselves, or space junk for fuel, but for now the metal is carried onboard. The launch, which is due from Kennedy Space Center in Florida, US, at 22:00 BST, is backed by the UK and European space agencies. Mark Stokes, chief executive and co-founder of Magdrive, said the mission showed what British innovation could achieve with the right support. "We've spent four years building something that breaks the mould," he said. "This launch isn't just about proving our tech – it's about proving the UK can lead in space." Dr Gianluigi Baldesi, from the European Space Agency, said the quick progress from project start to launch demonstrated the "bold" innovation it aimed to encourage. "In less than a year, we have gone from kick-off to launch," he said. Data from the test flight is expected in August and September. You can follow BBC Oxfordshire on Facebook, X (Twitter), or Instagram. Magdrive Scientists trying to grow tea plants in space Space mission creates first ever artificial solar eclipse New engine tech could get us to Mars faster

Sunshine abounds as the summer solstice arrives
Sunshine abounds as the summer solstice arrives

Hamilton Spectator

time8 hours ago

  • Hamilton Spectator

Sunshine abounds as the summer solstice arrives

Peak sunshine has arrived in the Northern Hemisphere — the summer solstice. Friday is the longest day of the year north of the equator, where the solstice marks the start of astronomical summer. It's the opposite in the Southern Hemisphere, where it is the shortest day of the year and winter will start. The word 'solstice' comes from the Latin words 'sol' for sun and 'stitium' which can mean 'pause' or 'stop.' The solstice is the end of the sun's annual march higher in the sky, when it makes its longest, highest arc. The bad news for sun lovers: It then starts retreating and days will get a little shorter every day until late December. People have marked solstices for eons with celebrations and monuments, including Stonehenge, which was designed to align with the sun's paths at the solstices. But what is happening in the heavens? Here's what to know about the Earth's orbit. Solstices are when days and nights are at their most extreme As the Earth travels around the sun, it does so at an angle relative to the sun. For most of the year, the Earth's axis is tilted either toward or away from the sun. That means the sun's warmth and light fall unequally on the northern and southern halves of the planet. The solstices mark the times during the year when this tilt is at its most extreme, and days and nights are at their most unequal. During the Northern Hemisphere's summer solstice, the upper half of the earth is tilted toward the sun, creating the longest day and shortest night of the year. This solstice falls between June 20 and 22. Meanwhile, at the winter solstice, the Northern Hemisphere is leaning away from the sun — leading to the shortest day and longest night of the year. The winter solstice falls between December 20 and 23. The equinox is when there is an equal amount of day and night During the equinox, the Earth's axis and its orbit line up so that both hemispheres get an equal amount of sunlight. The word equinox comes from two Latin words meaning equal and night. That's because on the equinox, day and night last almost the same amount of time — though one may get a few extra minutes, depending on where you are on the planet. The Northern Hemisphere's spring — or vernal — equinox can land between March 19 and 21, depending on the year. Its fall – or autumnal — equinox can land between Sept. 21 and 24. On the equator, the sun will be directly overhead at noon. Equinoxes are the only time when both the north and south poles are lit by sunshine at the same time. What's the difference between meteorological and astronomical seasons? These are just two different ways to carve up the year. While astronomical seasons depend on how the Earth moves around the sun, meteorological seasons are defined by the weather. They break down the year into three-month seasons based on annual temperature cycles. By that calendar, spring starts on March 1, summer on June 1, fall on Sept. 1 and winter on Dec. 1. ___ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

Scientists Line Up Satellites to Create "Artificial Total Solar Eclipse"
Scientists Line Up Satellites to Create "Artificial Total Solar Eclipse"

Yahoo

time19 hours ago

  • Yahoo

Scientists Line Up Satellites to Create "Artificial Total Solar Eclipse"

Two satellites just carefully lined up to form a perfect "artificial total solar eclipse" in orbit. Earlier this year, the two probes, which are part of the European Space Agency's Proba-3 mission, positioned themselves in a perfect line 492 feet apart to have one of them perfectly obfuscate the Sun's rays. Impressively, they were able to maintain their position with an accuracy down to the millimeter. The outermost satellite then snapped fascinating pictures of the Sun's corona, the outermost part of our star's atmosphere, something that's generally speaking only possible during a natural solar eclipse. The first "Occulter" satellite's 4.6-foot disc cast a three-inch shadow onto the Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun (ASPIICS) instrument mounted to the second "Coronagraph" satellite, allowing it to get an uninterrupted view of the Sun's corona. The spectacular satellite dance could give researchers new ways to study solar wind, or the continuous flow of particles from the Sun. It could also give them new views of coronal mass ejections, powerful explosions of plasma and magnetic fields that have been linked to radio blackouts and GPS outages here on Earth. "It is exciting to see these stunning images validate our technologies in what is now the world's first precision formation flying mission," said ESA director of technology Dietmar Pilz in a statement. Researchers behind the stunt are excited to gather even more images and data of the Sun's corona. "I was absolutely thrilled to see the images, especially since we got them on the first try," ASPIICS principal investigator Andrei Zhukov added. "Now we are working on extending the observation time to six hours in every orbit." "Each full image — covering the area from the occulted Sun all the way to the edge of the field of view – is actually constructed from three images," he explained. "Combining the three images gives us the full view of the corona." Best of all, Zhukov and his colleagues found that the satellites' "'artificial eclipse' images are comparable with those taken during a natural eclipse." "The difference is that we can create our eclipse once every 19.6-hour orbit," he added, "while total solar eclipses only occur naturally around once, very rarely twice a year." Scientists are already excited about the glut of new observations that could greatly enhance existing research into the Sun's atmosphere, including efforts to use computer simulations to predict future patterns. "This huge flow of observations will help refine computer models further as we compare and adjust variables to match the real images," said ESA space weather modeling coordinator Jorge Amaya in the statement. More on solar eclipses: Here's What NASA's Rovers See During an Eclipse on Mars

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store