logo
#

Latest news with #RoyalObservatoryofBelgium

First artificial eclipse in orbit delivers unprecedented glimpse of Sun's corona
First artificial eclipse in orbit delivers unprecedented glimpse of Sun's corona

Yahoo

time2 days ago

  • Science
  • Yahoo

First artificial eclipse in orbit delivers unprecedented glimpse of Sun's corona

In a dazzling first, two European spacecraft —flying in millimeter-perfect formation — have created an artificial solar eclipse in space, capturing the clearest images of the Sun's elusive corona yet. The European Space Agency's Proba-3 mission has released its first set of solar corona images, offering a rare glimpse into one of the Sun's most mysterious layers that holds clues to solar storms and space weather. The breakthrough comes after the twin satellites, carrying Coronagraph and Occulter, achieved the remarkable feat of flying 150 meters apart in near-perfect sync, creating an orbiting total eclipse for scientific study. Unlike traditional coronagraphs, which must contend with stray light and Earth's atmosphere, Proba-3 performed this delicate maneuver entirely in space. The Occulter blocked out the Sun's bright disk with a 1.4-meter shield, casting an 8-centimeter-wide shadow onto the Coronagraph's optical instrument, ASPIICS, which then captured the faint, ghostly halo of the corona. With its 5-centimeter aperture, ASPIICS is able to see much closer to the Sun's surface and with greater clarity than ever before. 'Each full image – covering the area from the occulted Sun all the way to the edge of the field of view – is actually constructed from three images. The difference between those is only the exposure time, which determines how long the coronagraph's aperture is exposed to light. Combining the three images gives us the full view of the corona,' said Andrei Zhukov, Principal Investigator for ASPIICS at the Royal Observatory of Belgium. This artificial eclipse can be generated every 19.6 hours and held for up to six hours, a vast improvement over the fleeting minutes of natural eclipses, which occur barely once or twice a year. The solar corona, mysteriously hotter than the surface beneath it, is central to understanding the solar wind and coronal mass ejections. These violent bursts of particles can spark auroras or disrupt communications and power grids on Earth. Proba-3's early observations are already helping refine solar models, especially with the support of ESA's Virtual Space Weather Modelling Centre and KU Leuven's COCONUT software. 'Seeing the first data from ASPIICS is incredibly exciting. Together with the measurements made by another instrument on board, DARA, ASPIICS will contribute to unraveling long-lasting questions about our home star,' says Joe Zender, ESA's Proba-3 project scientist. Proba-3's formation flying relies on a suite of advanced positioning systems developed under ESA's General Support Technology Programme. Mission manager Damien Galano said that the satellites achieved their first precise alignment autonomously, with ground control ready to step in, though future operations aim for full autonomy. 'Having two spacecraft form one giant coronagraph in space allowed us to capture the inner corona with very low levels of stray light in our observations, exactly as we expected.,' Galano said. 'Although we are still in the commissioning phase, we have already achieved precise formation flying with unprecedented accuracy. This is what allowed us to capture the mission's first images, which will no doubt be of high value to the scientific community. The mission also carried two other scientific instruments including the Digital Absolute Radiometer (DARA), which measures the Sun's total energy output, and the 3D Energetic Electron Spectrometer (3DEES), which studies electron activity in Earth's radiation belts. Built by a 14-country consortium led by Spain's Sener, with key input from Belgium and India, Proba-3 launched aboard a PSLV-XL rocket from Sriharikota in December 2024. Scientists are now working to extend the eclipse observation window and feed the data into models that could forecast solar activity with greater accuracy. 'Current coronagraphs are no match for Proba-3, which will observe the Sun's corona down almost to the edge of the solar surface. So far, this was only possible during natural solar eclipses,' says Jorge Amaya, Space Weather Modelling Coordinator at ESA. 'This huge flow of observations will help refine computer models further as we compare and adjust variables to match the real images. Together with the team at KU Leuven, which is behind one such model, we have been able to create a simulation of Proba-3's first observations.'

Artificial solar eclipses created by two European satellites
Artificial solar eclipses created by two European satellites

1News

time3 days ago

  • Science
  • 1News

Artificial solar eclipses created by two European satellites

A pair of European satellites have created the first artificial solar eclipses by flying in precise and fancy formation, providing hours of on-demand totality for scientists. The European Space Agency released the eclipse pictures at the Paris Air Show yesterday. Launched late last year, the orbiting duo have churned out simulated solar eclipses since March while zooming tens of thousands of kilometres above Earth. Flying 150 metres apart, one satellite blocks the sun like the moon does during a natural total solar eclipse as the other aims its telescope at the corona, the sun's outer atmosphere that forms a crown or halo of light. It's an intricate, prolonged dance requiring extreme precision by the cube-shaped spacecraft, less than 1.5 metres in size. Their flying accuracy needs to be within a mere millimeter, the thickness of a fingernail. This meticulous positioning is achieved autonomously through GPS navigation, star trackers, lasers and radio links. Dubbed Proba-3, the US$210 million (NZ$346.03 million) mission has generated 10 successful solar eclipses so far during the ongoing checkout phase. The longest eclipse lasted five hours, said the Royal Observatory of Belgium's Andrei Zhukov, the lead scientist for the orbiting corona-observing telescope. He and his team are aiming for a wondrous six hours of totality per eclipse once scientific observations begin in July. ADVERTISEMENT Scientists already are thrilled by the preliminary results that show the corona without the need for any special image processing, said Zhukov. "We almost couldn't believe our eyes,' Zhukov said in an email. 'This was the first try, and it worked. It was so incredible.' Two spacecraft of the Proba-3 mission aligning to create an eclipse to capture a coronagraph in space. (Source: Associated Press) Zhukov anticipates an average of two solar eclipses per week being produced for a total of nearly 200 during the two-year mission, yielding more than 1000 hours of totality. That will be a scientific bonanza since full solar eclipses produce just a few minutes of totality when the moon lines up perfectly between Earth and the sun — on average just once every 18 months. The sun continues to mystify scientists, especially its corona, which is hotter than the solar surface. Coronal mass ejections result in billions of tons of plasma and magnetic fields being hurled out into space. Geomagnetic storms can result, disrupting power and communication while lighting up the night sky with auroras in unexpected locales. While previous satellites have generated imitation solar eclipses — including the European Space Agency and NASA's Solar Orbiter and Soho observatory — the sun-blocking disk was always on the same spacecraft as the corona-observing telescope. What makes this mission unique, Zhukov said, is that the sun-shrouding disk and telescope are on two different satellites and therefore far apart. The distance between these two satellites will give scientists a better look at the part of the corona closest to the limb of the sun. ADVERTISEMENT "We are extremely satisfied by the quality of these images, and again this is really thanks to formation flying' with unprecedented accuracy, ESA's mission manager Damien Galano said from the Paris Air Show.

A look at first artificial solar eclipses created by two European satellites
A look at first artificial solar eclipses created by two European satellites

Nahar Net

time3 days ago

  • Science
  • Nahar Net

A look at first artificial solar eclipses created by two European satellites

by Naharnet Newsdesk 17 June 2025, 17:11 A pair of European satellites have created the first artificial solar eclipses by flying in precise and fancy formation, providing hours of on-demand totality for scientists. The European Space Agency released the eclipse pictures at the Paris Air Show on Monday. Launched late last year, the orbiting duo have churned out simulated solar eclipses since March while zooming tens of thousands of miles (kilometers) above Earth. Flying 492 feet (150 meters) apart, one satellite blocks the sun like the moon does during a natural total solar eclipse as the other aims its telescope at the corona, the sun's outer atmosphere that forms a crown or halo of light. It's an intricate, prolonged dance requiring extreme precision by the cube-shaped spacecraft, less than 5 feet (1.5 meters) in size. Their flying accuracy needs to be within a mere millimeter, the thickness of a fingernail. This meticulous positioning is achieved autonomously through GPS navigation, star trackers, lasers and radio links. Dubbed Proba-3, the $210 million mission has generated 10 successful solar eclipses so far during the ongoing checkout phase. The longest eclipse lasted five hours, said the Royal Observatory of Belgium's Andrei Zhukov, the lead scientist for the orbiting corona-observing telescope. He and his team are aiming for a wondrous six hours of totality per eclipse once scientific observations begin in July. Scientists already are thrilled by the preliminary results that show the corona without the need for any special image processing, said Zhukov. "We almost couldn't believe our eyes," Zhukov said in an email. "This was the first try, and it worked. It was so incredible." Zhukov anticipates an average of two solar eclipses per week being produced for a total of nearly 200 during the two-year mission, yielding more than 1,000 hours of totality. That will be a scientific bonanza since full solar eclipses produce just a few minutes of totality when the moon lines up perfectly between Earth and the sun — on average just once every 18 months. The sun continues to mystify scientists, especially its corona, which is hotter than the solar surface. Coronal mass ejections result in billions of tons of plasma and magnetic fields being hurled out into space. Geomagnetic storms can result, disrupting power and communication while lighting up the night sky with auroras in unexpected locales. While previous satellites have generated imitation solar eclipses — including the European Space Agency and NASA's Solar Orbiter and Soho observatory — the sun-blocking disk was always on the same spacecraft as the corona-observing telescope. What makes this mission unique, Zhukov said, is that the sun-shrouding disk and telescope are on two different satellites and therefore far apart. The distance between these two satellites will give scientists a better look at the part of the corona closest to the limb of the sun. "We are extremely satisfied by the quality of these images, and again this is really thanks to formation flying" with unprecedented accuracy, ESA's mission manager Damien Galano said from the Paris Air Show.

Satellites align to create 'artificial total solar eclipse,' photos show
Satellites align to create 'artificial total solar eclipse,' photos show

Yahoo

time3 days ago

  • Science
  • Yahoo

Satellites align to create 'artificial total solar eclipse,' photos show

Two European satellites created an "artificial total solar eclipse" in space, the European Space Agency announced June 16, delivering data that will improve scientists' understanding of the sun and its atmosphere. The agency said the satellites, named Coronagraph and Occulter, flew 429 feet apart in perfect formation for "several hours" without being controlled from the ground to create the artificial eclipse. The Proba-3 mission, according to the agency, helps scientists examine the sun's corona to study solar winds, the continuous flow of matter from the sun into outer space, and the workings of coronal mass ejections. "It is exciting to see these stunning images validate our technologies in what is now the world's first precision formation flying mission," Dietmar Pilz, European Space Agency's director of technology, engineering, and quality, said in a news release. The mission has created 10 artificial eclipses so far, with the longest being five hours, lead scientist Andrei Zhukov told The Associated Press. "We almost couldn't believe our eyes," Zhukov, who works for the Royal Observatory of Belgium, told the news organization service. "This was the first try, and it worked. It was so incredible." During the eclipses, the ASPIICS optical instrument on the Coronagraph captured images of the solar corona while the Occulter blocked out the sun's light. The images were processed by the ASPIICS Science Operations Center at the Royal Observatory of Belgium, where a team of scientists created photos of the corona based on input from the scientific community. "Current coronagraphs are no match for Proba-3, which will observe the sun's corona down almost to the edge of the solar surface. So far, this was only possible during natural solar eclipses," said Jorge Amaya, space weather modelling coordinator at the European Space Agency. The agency added that the Proba-3 mission's images will help computer modeling of the sun's corona. Amaya pointed to an already completed simulation of Proba-3's first observations, and the agency said that the data could help "offer a comprehensive image of the solar phenomena impacting our planet and help citizens and industry prepare against them." This article originally appeared on USA TODAY: European satellites create an artificial eclipse in space

European Satellites Create First Artificial Solar Eclipse
European Satellites Create First Artificial Solar Eclipse

NDTV

time3 days ago

  • Science
  • NDTV

European Satellites Create First Artificial Solar Eclipse

Cape Canaveral: A pair of European satellites have created the first artificial solar eclipses by flying in precise and fancy formation, providing hours of on-demand totality for scientists. The European Space Agency released the eclipse pictures at the Paris Air Show on Monday. Launched late last year, the orbiting duo have churned out simulated solar eclipses since March while zooming tens of thousands of miles (kilometers) above Earth. Flying 492 feet (150 meters) apart, one satellite blocks the sun like the moon does during a natural total solar eclipse as the other aims its telescope at the corona, the sun's outer atmosphere that forms a crown or halo of light. It's an intricate, prolonged dance requiring extreme precision by the cube-shaped spacecraft, less than 5 feet (1.5 meters) in size. Their flying accuracy needs to be within a mere millimeter, the thickness of a fingernail. This meticulous positioning is achieved autonomously through GPS navigation, star trackers, lasers and radio links. Dubbed Proba-3, the $210 million mission has generated 10 successful solar eclipses so far during the ongoing checkout phase. The longest eclipse lasted five hours, said the Royal Observatory of Belgium's Andrei Zhukov, the lead scientist for the orbiting corona-observing telescope. He and his team are aiming for a wondrous six hours of totality per eclipse once scientific observations begin in July. Scientists already are thrilled by the preliminary results that show the corona without the need for any special image processing, said Zhukov. "We almost couldn't believe our eyes," Zhukov said in an email. "This was the first try, and it worked. It was so incredible." Zhukov anticipates an average of two solar eclipses per week being produced for a total of nearly 200 during the two-year mission, yielding more than 1,000 hours of totality. That will be a scientific bonanza since full solar eclipses produce just a few minutes of totality when the moon lines up perfectly between Earth and the sun - on average just once every 18 months. The sun continues to mystify scientists, especially its corona, which is hotter than the solar surface. Coronal mass ejections result in billions of tons of plasma and magnetic fields being hurled out into space. Geomagnetic storms can result, disrupting power and communication while lighting up the night sky with auroras in unexpected locales. While previous satellites have generated imitation solar eclipses - including the European Space Agency and NASA's Solar Orbiter and Soho observatory - the sun-blocking disk was always on the same spacecraft as the corona-observing telescope. What makes this mission unique, Zhukov said, is that the sun-shrouding disk and telescope are on two different satellites and therefore far apart. The distance between these two satellites will give scientists a better look at the part of the corona closest to the limb of the sun. "We are extremely satisfied by the quality of these images, and again this is really thanks to formation flying" with unprecedented accuracy, ESA's mission manager Damien Galano said from the Paris Air Show.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store