logo
#

Latest news with #Proba-3

How scientists created an ‘artificial' total solar eclipse to unlock the Sun's secrets
How scientists created an ‘artificial' total solar eclipse to unlock the Sun's secrets

Indian Express

time10 hours ago

  • Science
  • Indian Express

How scientists created an ‘artificial' total solar eclipse to unlock the Sun's secrets

The sun's corona (or outer atmosphere) has proved a difficult subject for solar scientists on Earth to study, appearing only in a total solar eclipse. This phenomenon, occurring once in around 18 months, was their only opportunity to observe parts of the corona. However, with Proba-3's recent mission, research can advance at a much quicker pace. The European Space Agency (ESA) on June 16, announced that the Proba-3 mission had created an 'artificial total solar eclipse' in orbit. This was achieved as the mission's two spacecraft – the Coronagraph and the Occulter – flew in formation 150 metres apart, and aligned so that the Occulter's disc covered the sun's disc, casting a shadow onto the Coronagraph's optical instrument. 'I was absolutely thrilled to see the images, especially since we got them on the first try,' Andrei Zhukov, principal investigator for ASPIICS at the Royal Observatory of Belgium, said in a statement. The mission was launched in December 2024. It involved sending both satellites into the solar orbit. In March this year, both spacecraft flew 150 metres apart, in formation up to to a millimetre's precision, without control from the Earth for several hours. When creating the artificial solar eclipse, the satellites aligned in formation based on the position of the Sun. Then, Occulter's 1.4-metre large disc would be used to block the sun's disc. This would cast a shadow of approximately 8 centimetre, across the Coronagraph's optical instruments, positioned behind the Occulter. Thanks to the precision, these instruments were able to provide the images of the corona. 'Our 'artificial eclipse' images are comparable with those taken during a natural eclipse. The difference is that we can create our eclipse once every 19.6-hour orbit, while total solar eclipses only occur naturally around once, very rarely twice a year. On top of that, natural total eclipses only last a few minutes, while Proba-3 can hold its artificial eclipse for up to 6 hours,' Zhukov explained. This mission could prove crucial for solar scientists, with previously unseen angles of the elusive corona becoming available for study. One benefit could be the study of solar wind, described by the ESA as 'the continuous flow of matter from the Sun into outer space.' Driven by the corona, these winds usually consist of charged particles, and constantly rain down upon the Earth as well. However, this can be interrupted by coronal mass ejections (CMEs), or solar storms. This subsequently affects space weather, which in turn can affect Earth's power grids, communication systems, and satellite operations. With the data from the Proba-3 mission and any subsequent missions focused on corona imaging, solar scientists can be better prepared for the potential threat of a severe solar storm – which NASA describes as 'a sudden explosion of particles, energy, magnetic fields, and material blasted into the solar system by the Sun'. Another question that Proba-3 would be able to solve is how the corona, which extends millions of miles across space, but still reaches temperatures above a million degrees Celsius, burns much hotter than the surface. To understand the reasoning, Proba-3 is attempting to study the corona at a minimal distance from the sun's surface. Due to the quality of the equipment, fewer stray rays would hit the detector, more details would be captured, and fainter features would be detected as compared to a traditional coronagraph. 'Current coronagraphs are no match for Proba-3, which will observe the Sun's corona down almost to the edge of the solar surface. So far, this was only possible during natural solar eclipses,' Jorge Amaya, Space Weather Modelling Coordinator at ESA, said in the ESA release. Alongside the key data provided by Proba-3, its precision flying in formation also paved the way for future missions, such as the ESA's Laser Interferometer Space Antenna (LISA), scheduled to launch in 2035. This mission will contain three identical spacecraft, arranged in an equilateral triangle formation, trailing behind the Earth in its orbit around the Sun. The mission is scheduled to last two years, aiming to capture images of the corona for further study, and then re-enter the Earth's atmosphere five years post-launch, as per the ESA. (This article has been curated by Purv Ashar, who is an intern with The Indian Express)

Redwire Successfully Completes Integration of Hammerhead Spacecraft for Upcoming European Mission
Redwire Successfully Completes Integration of Hammerhead Spacecraft for Upcoming European Mission

Business Wire

time11 hours ago

  • Business
  • Business Wire

Redwire Successfully Completes Integration of Hammerhead Spacecraft for Upcoming European Mission

JACKSONVILLE, Fla.--(BUSINESS WIRE)--Redwire Corporation (NYSE: RDW), a leader in space infrastructure for the next generation space economy, announced today that is has completed the integration of a Hammerhead spacecraft platform for an upcoming European Space Agency (ESA) mission at its facility in Kruibeke, Belgium. The Hammerhead spacecraft will support ESA's Atmospheric Limb Tracker for Investigation of the Upcoming Stratosphere (ALTIUS) mission. Redwire is the prime contractor for ALTIUS. This milestone marks the completion of Hammerhead spacecraft platform integration at Redwire's state-of-the-art satellite processing facility in Belgium. Following platform integration, the satellite will undergo platform system testing and payload integration, marking the completion of the full satellite. Hammerhead is Redwire's highly versatile low Earth orbit spacecraft platform, offering exceptional performance and a track record of outstanding reliability with 50 years of in-orbit performance without spacecraft failure. The ALTIUS satellite also features Redwire's third-generation Advanced Data and Power Management System (ADPMS-3) avionics. 'Redwire's Belgium facility has emerged as a world-class satellite processing facility with a proven track record of building satellites for groundbreaking multinational missions, including ESA's Proba-3 mission,' said Redwire President of Civil and International Space, Mike Gold. 'We are incredibly proud of the team's accomplishment in achieving this milestone, and we look forward to continuing to build on this track record of efficiency and on-time deliveries for ESA in support of a bold new era of European space exploration and development.' Redwire's facility in Belgium has more than 40 years of spaceflight heritage developing spacecraft platforms and success delivering innovative technology for game-changing ESA programs. Most notably, every spacecraft used for ESA's Proba missions (Proba-1, Proba-2, Proba-V, and Proba-3) have been developed and integrated at Redwire's Belgium facility. Leveraging its legacy of innovation and excellence, Redwire continues to manufacture spacecraft for important ESA programs, including Skimsat, a technology demonstrator for a small satellite platform designed to operate in very low Earth orbit. Disclaimer: The views expressed herein can in no way be taken to reflect the official opinion of the European Space Agency. About Redwire Redwire Corporation (NYSE:RDW) is an integrated aerospace and defense company focused on advanced technologies. We are building the future of aerospace infrastructure, autonomous systems and multi-domain operations leveraging digital engineering and AI automation. Redwire's approximately 1,300 employees located throughout the United States and Europe are committed to delivering innovative space and airborne platforms transforming the future of multi-domain operations. For more information, please visit

First artificial eclipse in orbit delivers unprecedented glimpse of Sun's corona
First artificial eclipse in orbit delivers unprecedented glimpse of Sun's corona

Yahoo

time2 days ago

  • Science
  • Yahoo

First artificial eclipse in orbit delivers unprecedented glimpse of Sun's corona

In a dazzling first, two European spacecraft —flying in millimeter-perfect formation — have created an artificial solar eclipse in space, capturing the clearest images of the Sun's elusive corona yet. The European Space Agency's Proba-3 mission has released its first set of solar corona images, offering a rare glimpse into one of the Sun's most mysterious layers that holds clues to solar storms and space weather. The breakthrough comes after the twin satellites, carrying Coronagraph and Occulter, achieved the remarkable feat of flying 150 meters apart in near-perfect sync, creating an orbiting total eclipse for scientific study. Unlike traditional coronagraphs, which must contend with stray light and Earth's atmosphere, Proba-3 performed this delicate maneuver entirely in space. The Occulter blocked out the Sun's bright disk with a 1.4-meter shield, casting an 8-centimeter-wide shadow onto the Coronagraph's optical instrument, ASPIICS, which then captured the faint, ghostly halo of the corona. With its 5-centimeter aperture, ASPIICS is able to see much closer to the Sun's surface and with greater clarity than ever before. 'Each full image – covering the area from the occulted Sun all the way to the edge of the field of view – is actually constructed from three images. The difference between those is only the exposure time, which determines how long the coronagraph's aperture is exposed to light. Combining the three images gives us the full view of the corona,' said Andrei Zhukov, Principal Investigator for ASPIICS at the Royal Observatory of Belgium. This artificial eclipse can be generated every 19.6 hours and held for up to six hours, a vast improvement over the fleeting minutes of natural eclipses, which occur barely once or twice a year. The solar corona, mysteriously hotter than the surface beneath it, is central to understanding the solar wind and coronal mass ejections. These violent bursts of particles can spark auroras or disrupt communications and power grids on Earth. Proba-3's early observations are already helping refine solar models, especially with the support of ESA's Virtual Space Weather Modelling Centre and KU Leuven's COCONUT software. 'Seeing the first data from ASPIICS is incredibly exciting. Together with the measurements made by another instrument on board, DARA, ASPIICS will contribute to unraveling long-lasting questions about our home star,' says Joe Zender, ESA's Proba-3 project scientist. Proba-3's formation flying relies on a suite of advanced positioning systems developed under ESA's General Support Technology Programme. Mission manager Damien Galano said that the satellites achieved their first precise alignment autonomously, with ground control ready to step in, though future operations aim for full autonomy. 'Having two spacecraft form one giant coronagraph in space allowed us to capture the inner corona with very low levels of stray light in our observations, exactly as we expected.,' Galano said. 'Although we are still in the commissioning phase, we have already achieved precise formation flying with unprecedented accuracy. This is what allowed us to capture the mission's first images, which will no doubt be of high value to the scientific community. The mission also carried two other scientific instruments including the Digital Absolute Radiometer (DARA), which measures the Sun's total energy output, and the 3D Energetic Electron Spectrometer (3DEES), which studies electron activity in Earth's radiation belts. Built by a 14-country consortium led by Spain's Sener, with key input from Belgium and India, Proba-3 launched aboard a PSLV-XL rocket from Sriharikota in December 2024. Scientists are now working to extend the eclipse observation window and feed the data into models that could forecast solar activity with greater accuracy. 'Current coronagraphs are no match for Proba-3, which will observe the Sun's corona down almost to the edge of the solar surface. So far, this was only possible during natural solar eclipses,' says Jorge Amaya, Space Weather Modelling Coordinator at ESA. 'This huge flow of observations will help refine computer models further as we compare and adjust variables to match the real images. Together with the team at KU Leuven, which is behind one such model, we have been able to create a simulation of Proba-3's first observations.'

Artificial solar eclipses created by two European satellites
Artificial solar eclipses created by two European satellites

1News

time2 days ago

  • Science
  • 1News

Artificial solar eclipses created by two European satellites

A pair of European satellites have created the first artificial solar eclipses by flying in precise and fancy formation, providing hours of on-demand totality for scientists. The European Space Agency released the eclipse pictures at the Paris Air Show yesterday. Launched late last year, the orbiting duo have churned out simulated solar eclipses since March while zooming tens of thousands of kilometres above Earth. Flying 150 metres apart, one satellite blocks the sun like the moon does during a natural total solar eclipse as the other aims its telescope at the corona, the sun's outer atmosphere that forms a crown or halo of light. It's an intricate, prolonged dance requiring extreme precision by the cube-shaped spacecraft, less than 1.5 metres in size. Their flying accuracy needs to be within a mere millimeter, the thickness of a fingernail. This meticulous positioning is achieved autonomously through GPS navigation, star trackers, lasers and radio links. Dubbed Proba-3, the US$210 million (NZ$346.03 million) mission has generated 10 successful solar eclipses so far during the ongoing checkout phase. The longest eclipse lasted five hours, said the Royal Observatory of Belgium's Andrei Zhukov, the lead scientist for the orbiting corona-observing telescope. He and his team are aiming for a wondrous six hours of totality per eclipse once scientific observations begin in July. ADVERTISEMENT Scientists already are thrilled by the preliminary results that show the corona without the need for any special image processing, said Zhukov. "We almost couldn't believe our eyes,' Zhukov said in an email. 'This was the first try, and it worked. It was so incredible.' Two spacecraft of the Proba-3 mission aligning to create an eclipse to capture a coronagraph in space. (Source: Associated Press) Zhukov anticipates an average of two solar eclipses per week being produced for a total of nearly 200 during the two-year mission, yielding more than 1000 hours of totality. That will be a scientific bonanza since full solar eclipses produce just a few minutes of totality when the moon lines up perfectly between Earth and the sun — on average just once every 18 months. The sun continues to mystify scientists, especially its corona, which is hotter than the solar surface. Coronal mass ejections result in billions of tons of plasma and magnetic fields being hurled out into space. Geomagnetic storms can result, disrupting power and communication while lighting up the night sky with auroras in unexpected locales. While previous satellites have generated imitation solar eclipses — including the European Space Agency and NASA's Solar Orbiter and Soho observatory — the sun-blocking disk was always on the same spacecraft as the corona-observing telescope. What makes this mission unique, Zhukov said, is that the sun-shrouding disk and telescope are on two different satellites and therefore far apart. The distance between these two satellites will give scientists a better look at the part of the corona closest to the limb of the sun. ADVERTISEMENT "We are extremely satisfied by the quality of these images, and again this is really thanks to formation flying' with unprecedented accuracy, ESA's mission manager Damien Galano said from the Paris Air Show.

A look at first artificial solar eclipses created by two European satellites
A look at first artificial solar eclipses created by two European satellites

Nahar Net

time2 days ago

  • Science
  • Nahar Net

A look at first artificial solar eclipses created by two European satellites

by Naharnet Newsdesk 17 June 2025, 17:11 A pair of European satellites have created the first artificial solar eclipses by flying in precise and fancy formation, providing hours of on-demand totality for scientists. The European Space Agency released the eclipse pictures at the Paris Air Show on Monday. Launched late last year, the orbiting duo have churned out simulated solar eclipses since March while zooming tens of thousands of miles (kilometers) above Earth. Flying 492 feet (150 meters) apart, one satellite blocks the sun like the moon does during a natural total solar eclipse as the other aims its telescope at the corona, the sun's outer atmosphere that forms a crown or halo of light. It's an intricate, prolonged dance requiring extreme precision by the cube-shaped spacecraft, less than 5 feet (1.5 meters) in size. Their flying accuracy needs to be within a mere millimeter, the thickness of a fingernail. This meticulous positioning is achieved autonomously through GPS navigation, star trackers, lasers and radio links. Dubbed Proba-3, the $210 million mission has generated 10 successful solar eclipses so far during the ongoing checkout phase. The longest eclipse lasted five hours, said the Royal Observatory of Belgium's Andrei Zhukov, the lead scientist for the orbiting corona-observing telescope. He and his team are aiming for a wondrous six hours of totality per eclipse once scientific observations begin in July. Scientists already are thrilled by the preliminary results that show the corona without the need for any special image processing, said Zhukov. "We almost couldn't believe our eyes," Zhukov said in an email. "This was the first try, and it worked. It was so incredible." Zhukov anticipates an average of two solar eclipses per week being produced for a total of nearly 200 during the two-year mission, yielding more than 1,000 hours of totality. That will be a scientific bonanza since full solar eclipses produce just a few minutes of totality when the moon lines up perfectly between Earth and the sun — on average just once every 18 months. The sun continues to mystify scientists, especially its corona, which is hotter than the solar surface. Coronal mass ejections result in billions of tons of plasma and magnetic fields being hurled out into space. Geomagnetic storms can result, disrupting power and communication while lighting up the night sky with auroras in unexpected locales. While previous satellites have generated imitation solar eclipses — including the European Space Agency and NASA's Solar Orbiter and Soho observatory — the sun-blocking disk was always on the same spacecraft as the corona-observing telescope. What makes this mission unique, Zhukov said, is that the sun-shrouding disk and telescope are on two different satellites and therefore far apart. The distance between these two satellites will give scientists a better look at the part of the corona closest to the limb of the sun. "We are extremely satisfied by the quality of these images, and again this is really thanks to formation flying" with unprecedented accuracy, ESA's mission manager Damien Galano said from the Paris Air Show.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store