logo
#

Latest news with #SpaceTelescopeScienceInstitute

Webb telescope spots infant planets in different stages of development
Webb telescope spots infant planets in different stages of development

Yahoo

time12-06-2025

  • Science
  • Yahoo

Webb telescope spots infant planets in different stages of development

By Will Dunham WASHINGTON (Reuters) -The James Webb Space Telescope has observed two large planets at different stages of infancy - one with an atmosphere brimming with dusty clouds and the other encircled by a disk of material - orbiting a young sun-like star in a discovery that illustrates the complex nature of how planetary systems develop. The two gas giant planets, both more massive than our solar system's largest planet Jupiter, were directly imaged by Webb in a planetary system located in the Milky Way galaxy about 310 light years from Earth in the direction of the constellation Musca. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). Astronomers have detected more than 5,900 planets beyond our solar system - called exoplanets - since the 1990s, with less than 2% of these directly imaged like these two. It is rare to find exoplanets in their early developmental stages. The birth of a planetary system begins with a large cloud of gas and dust - called a molecular cloud - that collapses under its own gravity to form a central star. Leftover material spinning around the star in what is called a protoplanetary disk forms planets. This planetary system was observed by Webb very early in its developmental history. The star, named YSES-1, is about the same mass as the sun. The two planets orbit a long distance from the star, each probably needing thousands of years to complete a single orbit. While the sun is roughly 4.5 billion years old, this star is approximately 16 million years old, a veritable newborn. The researchers were surprised to find that the two neonatal planets observed by Webb appeared to be at different stages of development. The innermost of the two has a mass about 14 times greater than Jupiter and orbits the star at a distance 160 times greater than Earth orbits the sun and more than five times as far as our solar system's outermost planet Neptune. The planet is surrounded by a disk of small-grained dust, a state one might expect in a very early stage of formation when it is still coalescing, or perhaps if there has been a collision of some kind or a moon is in the process of taking shape. Webb spotted water and carbon monoxide in its atmosphere. The outermost planet has a mass about six times greater than that of Jupiter and orbits the star at 320 times the distance of Earth to the sun. Its atmosphere is loaded with silicate clouds, differing from our solar system's gas giants. Webb also detected methane, water, carbon monoxide and carbon dioxide in the atmosphere. It has no disk of material around it. The puzzling combination of traits presented by these two planets in the same system illustrates "the complex landscape that is planet formation and shows how much we truly don't know about how planetary systems came to be, including our own," said astrophysicist Kielan Hoch of the Space Telescope Science Institute in Baltimore, who led the study published this week in the journal Nature. "Theoretically, the planets should be forming around the same time, as planet formation happens fairly quickly, within about one million years," Hoch said. A real mystery is the location where the planets formed, Hoch added, noting that their orbital distance from the host star is greater than would be expected if they formed in the protoplanetary disk. "Furthermore, why one planet still retains material around it and one has distinct silicate clouds remains a big question. Do we expect all giant planets to form the same way and look the same if they formed in the same environment? These are questions we have been investigating for ages to place the formation of our own solar system into context," Hoch said. In addition to amassing a trove of discoveries about the early universe since becoming operational in 2022, Webb has made a major contribution to the study of exoplanets with its observations at near- and mid-infrared wavelengths. "Webb is revealing all sorts of atmospheric physics and chemistry happening in exoplanets that we didn't know before, and is currently challenging every atmospheric model we used pre-Webb," Hoch said.

'Uranus is weird.' Big moons of tilted ice giant hide a magnetic mystery, Hubble telescope reveals
'Uranus is weird.' Big moons of tilted ice giant hide a magnetic mystery, Hubble telescope reveals

Yahoo

time12-06-2025

  • Science
  • Yahoo

'Uranus is weird.' Big moons of tilted ice giant hide a magnetic mystery, Hubble telescope reveals

When you buy through links on our articles, Future and its syndication partners may earn a commission. New data from the Hubble Space Telescope suggests that Uranus' largest moons are gathering dust — literally. Uranus, the seventh planet from the sun and home to 28 known moons, is well known for its bizarre tilt. The planet spins almost completely on its side, an oddball orientation that twists its magnetic field into a warped and constantly shifting force, which scientists have long thought would leave visible scars on its moons by bombarding them with charged particles. However, new Hubble Space Telescope observations of Uranus' four largest moons — Ariel, Umbriel, Titania and Oberon — show no clear signs of the expected radiation damage, Christian Soto of the Space Telescope Science Institute in Maryland, who led the analysis, told reporters on Tuesday (June 10) at the 246th American Astronomical Society (AAS) press conference in Alaska. Based on data from NASA's Voyager 2 flyby in 1986 and decades of modeling, scientists expected the trailing hemispheres of Uranus' moons — the sides opposite their direction of travel — to be visibly darkened by radiation. The leading sides, by contrast, were expected to remain relatively brighter. Instead, the researchers found that the two outer moons, Titania and Oberon, are darker on their leading sides, the opposite of what they had predicted. The visible darkening, they say, doesn't come from Uranus' magnetic field at all, but from dust. Hubble's data points to a slow inward drift of dust from Uranus' distant irregular moons, which orbit between 2.5 to 13 million miles (4 to 20 million kilometers) from the planet. These outer moons are constantly bombarded by micrometeorites, which kick up particles that gradually spiral inward over millions of years, Soto said. As Titania and Oberon travel through this diffuse dust cloud, they accumulate the particles mostly on their leading sides. "Think of driving very fast on a highway, and bugs are hitting your windshield — that's what we're seeing here," Soto said during the press briefing. Interestingly, the inner moons Ariel and Umbriel show no significant difference in brightness between their leading and trailing sides — possibly because the drifting dust doesn't reach them, thanks to shielding by Titania and Oberon. "Dust collection — I didn't even expect to get into that hypothesis," Richard Cartwright, a planetary scientist at the Johns Hopkins University's Applied Physics Laboratory in Maryland, said in a statement. "But you know, data always surprise you." As for the role of Uranus' powerful magnetic field, researchers now suspect that its effects might be subtler or more complex than previously thought. It may still be interacting with the moons, but not in a way that creates strong contrasts on their surfaces. RELATED STORIES: — Uranus: Everything you need to know about the coldest planet in the solar system — Are there hidden oceans inside the moons of Uranus? Their wobbles could tell us — A day on Uranus is actually longer than we thought, Hubble Telescope reveals "Uranus is weird, so it's always been uncertain how much the magnetic field actually interacts with its satellites," Cartwright said in the statement. The findings highlight how little we still know about Uranus. Apart from Voyager 2's brief flyby nearly 40 years ago, coincidentally during a rare solar event, no dedicated mission has ever visited the planet. To learn more, Soto's team has scheduled follow-up observations with the James Webb Space Telescope within the next year. Using infrared imaging, Webb will take a closer look at the same moons, potentially confirming whether dust, radiation or a combination of both is shaping their surfaces. "Why do we do this?" Soto said at the briefing. "Well, Uranus is weird — so why not?"

Astronomers left puzzled by high-altitude clouds forming on young planet
Astronomers left puzzled by high-altitude clouds forming on young planet

Yahoo

time10-06-2025

  • Science
  • Yahoo

Astronomers left puzzled by high-altitude clouds forming on young planet

Should humans ever venture to a particular planet that circles a sun-like star in the constellation of the fly, they would do well to keep an eye on the weather. The thick slabs of cloud that blot the planet's skies are mostly made from mineral dust, but astronomers suspect there may be iron in them, too, which would rain down on the world below when the clouds break. Astronomers spotted the high-altitude clouds when they trained the James Webb space telescope (JWST) on the young star system, which lies 307 light years away in the deep southern sky. The star, YSES-1, is a newbie by cosmic standards, a mere 1m years old compared with the 4.6bn-year-old sun. The star is circled by two gas giants, both still forming and both larger than Jupiter, the biggest planet in the solar system. Related: Astronomers find signal that gives 'unexpected' insight into early universe Dr Kielan Hoch, an astrophysicist at the Space Telescope Science Institute in Baltimore, Maryland, said the planetary system's youth made it a prime target for astronomers to learn more about the early evolution of planets around faraway stars. 'There's a small handful of multiplanet systems that have been directly imaged,' Hoch said. 'And they are a unique laboratory to test planet formation theories as they formed in the same environment.' 'Both planets are still forming, which is why they are still bright enough for us to detect,' she added. 'The light we are seeing is from their formation as they begin to shrink and condense.' When the team began their observations they were surprised to find both planets in the telescope's field of view, giving them information on two worlds for the price of one. The outer planet, YSES-1c, is the smaller of the two worlds, and about six times the mass of Jupiter. The telescope revealed high-altitude clouds in the planet's atmosphere, but instead of being made from water vapour as on Earth, the clouds consist of magnesium silicate dust grains and perhaps some iron. 'The iron would indeed precipitate out,' Hoch said. The astronomers described the observations as the first direct detection of such clouds on a planet circling a sun-like star. Further data revealed a disc of material made up of trillions of tonnes of dust particles around the larger inner world, YSES-1b, about 14 times the mass of Jupiter. The findings were published in Nature. Hoch said the disc around the inner planet was a 'puzzle for formation theories' since both planets must have formed in the same environment. 'Why did YSES-1b hold on to material around it while YSES-1c did not?' she said. An added mystery is why a 16m-year-old planet still has a disk of material swirling around it. Astronomers' theories of planet formation suggest that any encircling dust should have settled after the first 5m years. 'We wouldn't expect the planets to look so different from one another if they formed in the same protoplanetary disk,' Hoch said. 'JWST is providing an immense amount of data to continue to refine models and improve our understanding.' The $10bn telescope has transformed astronomy since it launched in December 2021 from Europe's Spaceport in French Guiana. The flagship mission has peered back to the first galaxies that lit up the cosmos, spied strange new worlds, and witnessed black holes colliding. It has even spotted tantalising, if controversial, hints of life beyond Earth.

Iron May Rain From Sand Clouds on Newly-Discovered Planet
Iron May Rain From Sand Clouds on Newly-Discovered Planet

Newsweek

time10-06-2025

  • Science
  • Newsweek

Iron May Rain From Sand Clouds on Newly-Discovered Planet

Based on facts, either observed and verified firsthand by the reporter, or reported and verified from knowledgeable sources. Newsweek AI is in beta. Translations may contain inaccuracies—please refer to the original content. Dusty clouds made of sand—that may rain iron—blanket a giant planet orbiting a young, sun-like star just 310 light-years from Earth, the James Webb Space Telescope has revealed. The discovery was made by an international team of astronomers led from the Space Telescope Science Institute (STScI) in Baltimore Maryland. Around the star—dubbed "YSES-1"—the researchers also directly observed another giant exoplanet around which is a potentially multiple-moon-forming circumplanetary disk. "This work highlights the incredible abilities of JWST to characterize exoplanet atmospheres," said paper author and astronomer Evert Nasedkin of Trinity College Dublin, Ireland, in a statement. "With only a handful of exoplanets that can be directly imaged, the YSES-1 system offers unique insights into the atmospheric physics and formation processes of these distant giants." An artist's impression of the planets of the star system YSES-1. An artist's impression of the planets of the star system YSES-1. Ellis Bogat Using Webb's Near InfraRed Spectrograph (NIRSpec), the team were able to capture the two planets—which are both several times larger than Jupiter, and orbit out far from their host star—in a single exposure. This has provided what lead author and STScI physicist Kielan Hoch calls "the most detailed dataset of a multi-planet system to date." Nasedkin added: "Directly imaged exoplanets—planets outside our own solar system—are the only exoplanets that we can truly take photos of. "These exoplanets are typically still young enough that they are still hot from their formation—and it is this warmth, seen in the thermal infrared, that we as astronomers observe." By recording the light coming from the two exoplanets, the team were able to unpick the signals that reveal the chemical makeup of the gas giant's atmospheres. "When we looked at the smaller, farther-out companion—known as YSES-1c—we found the tell-tale signature of silicate clouds in the mid-infrared," said Nasedkin. "Essentially made of sand-like particles, this is the strongest silicate absorption feature observed in an exoplanet yet." The team's analysis also indicated that the clouds contain iron, which may fall from the clouds down into the planet as rain. "We believe this is linked to the relative youth of the planets: younger planets are slightly larger in radius, and this extended atmosphere may allow the cloud to absorb more of the light emitted by the planet." The circumplanetary disk is the inner planet, YSES-1b, meanwhile, presents something of a mystery. Only three other such disks have been identified to date, but they are all around objects that are significantly younger than YSES-1b—leading to questions as to how the newly discovered disk could be so long-lived. And that is far from the only puzzle that will need to be solved. "The YSES-1 system planets are also too widely separated to be explained through current formation theories, so the additional discoveries of distinct silicate clouds around YSES-1c and small hot dusty material around YSES-1b leads to more mysteries and complexities for determining how planets form and evolve," Hoch concluded. Do you have a tip on a science story that Newsweek should be covering? Do you have a question about exoplanets? Let us know via science@ Reference Hoch, K. K. W., Rowland, M., Petrus, S., Nasedkin, E., Ingebretsen, C., Kammerer, J., Perrin, M., D'Orazi, V., Balmer, W. O., Barman, T., Bonnefoy, M., Chauvin, G., Chen, C., De Rosa, R. J., Girard, J., Gonzales, E., Kenworthy, M., Konopacky, Q. M., Macintosh, B., Moran, S. E., Morley, C. V., Palma-Bifani, P., Pueyo, L., Ren, B., Rickman, E., Ruffio, J.-B., Theissen, C. A., Ward-Duong, K., & Zhang, Y. (2025). Silicate clouds and a circumplanetary disk in the YSES-1 exoplanet system. Nature.

Stunning Direct Images of Alien Worlds Are Detailed Enough to Reveal Clouds
Stunning Direct Images of Alien Worlds Are Detailed Enough to Reveal Clouds

Yahoo

time10-06-2025

  • Science
  • Yahoo

Stunning Direct Images of Alien Worlds Are Detailed Enough to Reveal Clouds

New images from the JWST are about as close as we've ever come to seeing the sky of an alien world outside the Solar System. Direct images of a gas giant exoplanet orbiting a star called YSES-1 have revealed clouds of fine sand drifting high up in its atmosphere. What's more, similar observations of a neighboring world suggest it is surrounded by a large, swirling disk rich with olivine, a mineral that can form the gemstone peridot here on Earth. "Everything is exciting about these two results," astrophysicist and lead author Kielan Hoch of the Space Telescope Science Institute told ScienceAlert. "The observations were novel as we could observe 'two for the price of one' with JWST NIRSpec, and discovering two major planetary features on each object." Planets outside our Solar System are elusive beasts. They are extremely difficult to see directly; they are very far away, and small and dim, obscured by the blazing light of the stars they orbit. Of the nearly 6,000 confirmed to date, the vast, vast majority have only been detected and measured indirectly – that is, based on changes their presence evokes in the light of their host stars. Only around 80 exoplanets have been seen directly. There's a lot you can tell about a planet from the way it tugs on its surrounds or eclipses its star. But direct observations of the light it emits can reveal far more. Even so, it takes a powerful instrument to extract a signal from the faint light of even the closest exoplanets. The YSES-1 system is only 306 light-years away and contains two known planets; YSES-1b, which is closer to the star at a distance of 160 astronomical units, and YSES-1c, at 320 astronomical units. YSES-1c is around six times the mass of Jupiter, while YSES-1b is the larger of the two at around 14 times Jupiter's mass, putting it right on the mass boundary between planets and brown dwarfs. Prior direct observations of this system suggested that the world may have interesting atmospheric properties, but the instruments involved lacked the power to detect them. Cue JWST. "With the NIRSpec instrument on JWST we are able to get images of the planets at thousands of wavelengths at once. The images can be reduced to produce spectra, which is thermal light coming from the planet itself," Hoch explained. "As the light passes through the atmosphere of the exoplanet, some of the light will get absorbed by molecules and cause dips in brightness of the planet. This is how we are able to tell what the atmospheres are made of!" The results? The most detailed spectral dataset of a multi-planet system compiled to date. Both exoplanets, the researchers found, showed evidence of water, carbon monoxide, carbon dioxide, and methane in their atmospheres – all of which are relatively common atmospheric components. It's where they diverge that things start to get interesting. "For YSES-1c, we see lots of molecular features from water, carbon dioxide and carbon monoxide, and methane. At longer wavelengths, we see absorption caused by silicate particles, which has a different spectral shape," Hoch said. "We use laboratory data of different particles and structures to model which silicates fit the data best and determine other properties of those particles. Our models show that there could be small silicate particles high up in the atmosphere that can contain small amounts of iron that rains out of the clouds. However, our models also show that a mixture of only silicates can also fit the data." No such spectra feature was observed for YSES-1b, but something else emerged: the signature of small grains of olivine in a disk around the exoplanet. Olivine is a mineral that forms in volcanic conditions here on Earth; particularly fine gemstone-quality examples form peridot. Olivine is also found in meteorites, so it seems the mineral can form easily in molten rock situations. However, it shouldn't be seen in dust form around YSES-1b. Dust settling is an efficient process expected to take a maximum of about 5 million years, Hoch explained. The YSES-1 system is estimated to be around 16.7 million years old. It's possible that the olivine-rich dust is debris from a collision between objects orbiting near YSES-1b – which means the observations came at a very lucky point in cosmic time. Both sets of results are spectacular. "We hoped to detect clouds in YSES-1c's atmosphere as its spectral type is theorized to have a cloudy atmosphere. But, when we saw the feature, it was wildly different from other silicate features seen in brown dwarfs," Hoch said. "We did NOT expect to see evidence for a disk around the inner planet YSES-1b. That was certainly a surprise." All the best astrophysical observations raise at least as many questions as they answer. YSES-1 is no exception. The disk around YSES-1b is one big one. We also don't know enough about exoplanetary atmospheres, or how long these objects take to form. Ongoing work to directly study the atmospheres of other exoplanets will help fill in some of these gaps in our knowledge. "I also am excited about the result as this research was led by early career scientists. I was a graduate student when I proposed to use JWST to image this planetary system, and JWST had not launched yet and was not designed for looking at exoplanets," Hoch said. "The first five authors of the manuscript range from first year graduate student to postdoctoral fellow. I believe this highlights the need to support early career scientists, and that is a result most exciting for me." The research has been published in Nature. Stunning 'Solar Curtains' Phenomenon Revealed on The Sun in New Images The Sun's Fury Is Making SpaceX Satellites Plummet From The Sky Astronomers Just Discovered The Biggest Explosions Since The Big Bang

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store