Researchers issue warning after new study reveals powerful phenomenon causing flooding along coast: 'Poses threats to both lives and infrastructure'
New research indicates that a climate-change weakened network of ocean currents is a cause of a significant portion of flooding along the northeast coast of the United States.
A vital ocean system, referenced by some as the Earth's "cardiovascular system," is shifting and contributing to flooding events.
CNN reported that a new study, published in mid-May by Science Advances, showed that from 2005 to 2022 the U.S. Northeast experienced up to eight days of flooding annually due to sea level changes driven by a slowdown of the Atlantic Meridional Overturning Circulation. This means roughly 20% to 50% of total flooding events at monitored sites could be linked to the weakening AMOC.
While extreme weather like flooding has always occurred, human activities are intensifying it.
As a 2024 post from the Union of Concerned Scientists explained, human activity has caused temperatures to rise globally, melting ice sheets and dumping huge amounts of freshwater into the North Atlantic.
"Because of this," according to the UCS, "the ocean waters in the north are less salty and less dense than before," upending delicately balanced circulation patterns. Less dense and warmer water takes up greater space, leading sea levels to rise along with the temperatures.
This research is part of a growing body of work demonstrating how a weakening AMOC can strengthen flooding events.
Higher sea levels can supercharge floods and storm surges, causing powerful waters to reach further inland. They can also make flooding more frequent by setting the baseline much closer to flood status — just as a mostly full glass of water is more likely to spill over with just a little added on top.
Study co-author Liping Zhang, who is also a scientist at the National Oceanic and Atmospheric Administration, told CNN that flooding in the Northeast coastal states can "reshape the coastal environment … (and) poses threats to both lives and infrastructure in coastal regions."
That could mean sudden basement floods in homes never before prone to such issues or washed-out roads delaying commutes and cutting off vital services to those in need. Public works and recreational areas could also sustain dangerous and costly destruction, threatening human health and safety too.
Do you think your city has good air quality?
Definitely
Somewhat
Depends on the time of year
Not at all
Click your choice to see results and speak your mind.
Such hazards could end up forcing some residents and even whole communities to relocate, with marginalized populations facing disproportionate impacts. High sea levels can also displace barrier islands and critically damage wildlife habitats.
The NOAA has called for a cost-effective and enhanced observation network across the Atlantic Ocean to spot where AMOC changes originate. Meanwhile, experts at a January 2025 JPI Climate meeting agreed to complete a report covering potential tipping points, consequences, and mitigation strategies.
Research like this new study can arm experts with the information they need to understand the coming dangers and plan for how to help communities counter and navigate them. In the U.S., efforts to prevent Northeast flooding are underway, including marsh restoration and flood resilience initiatives.
Eco-friendly practices could help limit further disruption of the AMOC by mitigating temperature rise, and one option for homeowners is to reduce the production of heat-trapping pollution by leveraging a clean, renewable source like solar energy.
Installing solar panels together with a battery system comes with added benefits, like ensuring a home's access to power in the wake of weather-related grid outages and significantly lowering energy bills. Resources like the free tool from EnergySage can also help residents compare vetted local installers, with the potential to save homeowners up to $10,000.
Helping whole communities to learn about the benefits of cleaner options can multiply the effect and galvanize actions close to home with the possibility of far-reaching impacts. Organizing local walking and biking groups, for example, and supporting public transit can help cut back on planet-warming gases.
Join our free newsletter for good news and useful tips, and don't miss this cool list of easy ways to help yourself while helping the planet.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
43 minutes ago
- Yahoo
Newly Discovered Footprints Dramatically Re-date When Humans First Came to Americas
A new study published in the journal Science Advances confirms that the peopling of the Americas began much earlier than originally thought. Back in 2021, a series of footprints were discovered within the mud of a paleolake bed which had long ago dried up. A 2021 study hypothesized that the prints meant the arrival of settlers to North America occurred somewhere between 23,000 and 21,000 years earlier than previously believed. Now, the new study has confirmed that the footprints were made between 20,700 and 22,400 years ago. "It's a remarkably consistent record," explained lead author Vance Holliday, who was also a co-author on the initial study. "You get to the point where it's really hard to explain all this away. As I say in the paper, it would be serendipity in the extreme to have all these dates giving you a consistent picture that's in error.'Halliday undertook the study for a second time because there was some controversy over the use of ancient pollen and seeds to determine the footprints' age. For this new study, he and his researchers analyzed the mud itself. 'Mud never lies,' Halliday said, explaining that it always holds up to radiocarbon analysis. This most recent study makes the third paper and third laboratory to confirm the timeframe of the footprints' creation. 'It would be serendipity in the extreme to have all these dates giving you a consistent picture that's in error,' Halliday said. The discovery is particularly notable for its lack of artifacts, leading Halliday to posit that the footprints were left by nomadic hunter-gatherers trudging through the lake bed. 'These people live by their artifacts, and they were a long way from where they can acquire replacement material,' he explained. 'They're not just randomly losing artifacts. It's logical…If you're passing through, carrying your gear, you're not leaving it by chance.' The footprints predate the Clovis people, which have long been believed to be the oldest North American humans on record. 'When you stand there and see the prints, you understand they undermine everything you've learned. They're not gesture steps—they're a revolution in human arrival history,' Holliday said. Newly Discovered Footprints Dramatically Re-date When Humans First Came to Americas first appeared on Men's Journal on Jun 21, 2025
Yahoo
a day ago
- Yahoo
Earth's Magnetic Field Might Weirdly Be Controlling the Air We Breathe, Scientists Say
"Hearst Magazines and Yahoo may earn commission or revenue on some items through these links." Here's what you'll learn when you read this story: Earth's oxygenated atmosphere and magnetic field make life possible, but scientists have discovered that there's a hidden link between the two that's stronger than we originally imagined. Comparing 540 million years of data from charcoal deposits and magnetic crystals formed from ancient volcanic eruptions, scientists found that the processes creating both increase at the same rate over time, and even experience the same jump in activity levels around 330 million years ago. Scientists aren't yet certain which mechanism is impacting the other—or if there is a third mechanism impacting them both. If you list all of the things that had to go right to make life on Earth possible, our minuscule existence (cosmically speaking) seems all the more amazing. Our Sun is a G-type star with moderate radiation output that doesn't tidally lock our planet. The Earth is situated in our Sun's habitable zone. The planet has maintained a robust atmosphere for hundreds of millions of years, and the dynamo at the planet's heart generates a magnetic field that protects us from the most harmful effects of space radiation. Earth truly is a paradise for life. Although scientists have known about these life-giving aspects of Earth for centuries, they're still discovering surprising connections between them. In a new study published last week in the journal Science Advances, scientists from NASA, the University of Washington, and the University of Leeds in the U.K. discovered a surprising connection between two of Earth's most important life-sustaining features—its oxygenated atmosphere and its magnetic field. It's hardly surprising that the existence of one of these features might impact the existence of the other. After all, Mars (which is also in the Sun's habitable zone) used to have an atmosphere, but without a robust magnetic field, the Red Planet eventually lost that atmosphere to the unrelenting lashing of solar winds. However, the authors of this new paper found that, on Earth, the correlation between these two systems runs much deeper than we previously imagined. 'We find that both exhibit strong linearly increasing trends, coupled with a large surge in magnitude between 330 and 220 million years ago,' the authors wrote. 'Our findings suggest unexpected strong connections between the geophysical processes in Earth's deep interior, the surface redox budget, and biogeochemical cycling.' Analyzing data stretching back to the Cambrian some 541 million years ago, the researchers found that the rise in Earth's magnetic field and the rise in its oxygen levels were very closely aligned—slowly increasing overtime, except for one bout of increased activity lasting from 330 million to 220 million years ago. To map this comparison over the course of hundreds of millions of years, the researchers couldn't rely on direct data—there is no such record for atmospheric oxygen levels, for example. However, they could track the strength of wildfires, which show up as charcoal deposits in the geologic record. This would provide a clue, since a stronger, longer-lasting fire means that there was more oxygen in the atmosphere to fuel said fire. To compare this record with Earth's magnetic field history, the team analyzed certain magnetic crystals that formed in ancient volcanoes and—due to their composition—essentially act like a 'compass frozen in time,' according to Nature. Once plotted side-by-side, the team noticed that the two processes largely increased in lockstep with one another, and even experienced the same increase 330 million years ago. Interestingly, this coincides with the formation of Pangea, though scientists aren't sure exactly if the formation of the supercontinent is related to the increase or a coincidence, as the data does stretch back far enough to compare levels to other supercontinents in Earth's history. So, what's going on here? Well, the researchers aren't exactly sure, but they have a few guesses. The most likely one is that Earth's magnetic field directly impacts oxygen levels, as it protects Earth (and oxygen-producing plants) from solar radiation. However, it's also possible that increased oxygenation coupled with plate tectonics—which drive oxygen toward the liquid outer core that produces the magnetic field—could also play a role. The authors also aren't ruling out the idea that a third, currently unknown mechanism could provide an explanation for this steadily upward trend. 'One single mind cannot comprehend the whole system of the Earth,' Ravi Kopparapu, a co-author of the study from NASA, told Live Science. 'We're like kids playing with Legos, with each of us having a separate Lego piece. We're trying to fit all of it together and see what's the big picture.' While 540 million years is an unfathomably long time compared to our human lifespan (or even our species' existence), it's only around 12 percent of Earth's entire existence, so these trends could simply be coincidental. All we can do is continue searching for answers among the clues that we do have, and try to grasp just how wondrous our home planet really is. You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life?


USA Today
a day ago
- USA Today
Climate change threatens world food supply. How bad could it be in the U.S.?
It's especially worrisome in the United States, where top crop production could drop by as much as 50% by 2100. The planet's food system faces growing risks from climate change, a new study says. It's especially worrisome in the United States, where top crop production could drop by as much as 50% by 2100. The study, published June 18, assessed six staple crops – maize (corn), soybeans, rice, wheat, cassava and sorghum – and found that only rice might avoid substantial losses from rising temperatures. 'If the climate warms by 3 degrees, that's basically like everyone on the planet giving up breakfast," study co-author Solomon Hsiang of Stanford University said in a statement. Will there still be a Corn Belt? The projected losses for U.S. agriculture are especially steep, according to the study. 'Places in the Midwest that are really well suited for present-day corn and soybean production just get hammered under a high warming future,' said lead study author Andrew Hultgren of the University of Illinois Urbana-Champaign. 'You do start to wonder if the Corn Belt is going to be the Corn Belt in the future.' Scientists estimated that for every 1.8-degree Fahrenheit increase in temperature above pre-industrial levels, production will decline by 120 calories per person per day, the equivalent of 4.4% of today's daily consumption. That will push up prices and make it harder for people to access food, Hsiang told CNN. Wheat, soy and corn most affected Wheat and corn will be among the crops most at risk, the study found. The study suggested that under a high-emissions scenario, by the end of the century, maize production could decline by up to 40% in the United States, Eastern China, Central Asia, Southern Africa and the Middle East. Wheat loses could range from 15% to 25% in Europe, Africa and South America and 30% to 40% in China, Russia, the United States and Canada. 'This is basically like sending our agricultural profits overseas," Hsiang said in a statement from Stanford. "We will be sending benefits to producers in Canada, Russia, China. Those are the winners, and we in the U.S. are the losers. The longer we wait to reduce emissions, the more money we lose.' Data center: Hot, hotter, hottest: How much will climate change warm your county? Steepest losses at the extremes The steepest losses occur at the extremes of the agricultural economy, according to a statement from Stanford University. That includes modern breadbaskets that now enjoy some of the world's best growing conditions, such as the United States, and subsistence farming communities that rely on small harvests of cassava. In terms of food production capacity from staple crops, the analysis found yield losses may average 41% in the wealthiest regions and 28% in the lowest-income regions by 2100. In the study, scientists concluded further adaptation and the expansion of cropland may be needed to ensure food security and limit the effects of climate change. A favorable climate, Hsiang said, is a big part of what keeps farmland productive across generations. 'Farmers know how to maintain the soil, invest in infrastructure, repair the barn,' Hsiang said. 'But if you're letting the climate depreciate, the rest of it is a waste. The land you leave to your kids will be good for something, but not for farming.' The study was published in the peer-reviewed British journal Nature.