logo
How humpback whales are playfully communicating with humans, according to scientists

How humpback whales are playfully communicating with humans, according to scientists

Yahoo09-06-2025

Humpback whales may be communicating with humans in a playful way, according to researchers who have been studying the marine mammals' behavior.
Researchers from the SETI Institute, a Silicon Valley-based nonprofit research organization, documented humpback whales producing large bubble rings -- similar to the rings humans can produce while blowing smoke -- during friendly interactions with humans, they noted in a paper published last month in the journal Marine Mammal Science.
MORE: 50th anniversary of 'Jaws': How the film impacted public perception of sharks
This behavior, while little studied, could represent play or communication, the scientists said.
Humpback whales were already known to use bubbles to corral, and males have been observed creating bubble trails or bursts when competing for a female mate, according to the SETI Institute.
But new observations that appear to show humpback whales producing bubble rings during friendly encounters with humans contributes to a broader goal of studying non-human intelligence, the scientists said.
Studying non-human intelligence can aid in the search for extraterrestrial life, the researchers said. The SETI whale team is aiming to develop filters that aid in parsing cosmic signals for signs of extraterrestrial life by studying intelligent, non-terrestrial -- or aquatic -- nonhuman communication systems, according to the research organization.
"Because of current limitations on technology, an important assumption of the search for extraterrestrial intelligence is that extraterrestrial intelligence and life will be interested in making contact and so target human receivers," Laurance Doyle, SETI Institute scientist and co-author on the paper, said in a statement. "This important assumption is certainly supported by the independent evolution of curious behavior in humpback whales."
Researchers analyzed 12 bubble ring–production episodes involving 39 rings made by 11 individual whales, they said. They determined the whales are blowing bubble rings in the direction of humans in an apparent attempt to playfully interact, observe humans' response and engage in some form of communication, Fred Sharpe, a co-author of the paper, said in a statement.
"Humpback whales live in complex societies, are acoustically diverse, use bubble tools and assist other species being harassed by predators," Sharpe, who is a legacy board member of the Alaska Whale Foundation, said.
MORE: Scientists discover how whales can sing under water and how shipping noise can disrupt communication
Humpback whales often display "inquisitive, friendly behavior" toward boats and humans, according to Jodi Frediani, a marine wildlife photographer and paper co-author.
"We've now located a dozen whales from populations around the world, the majority of which have voluntarily approached boats and swimmers blowing bubble rings during these episodes of curious behavior," Frediani said.
For decades, scientists have been studying how intelligent marine mammals such as whales and dolphins communicate with each other. In 2021, researchers from the SETI Institute recorded a conversation with a humpback whale named Twain by playing whale calls through an underwater speaker.
MORE: Ocean scientists concerned over uptick of whale deaths on Northeast coasts
Last year, another group of researchers at the University of Southern Denmark discovered how baleen whales are able to sing underwater. Also in 2024, SETI Institute researchers discovered that whale calls made during bubble feeding events were likely a way for whales to issue instructions to the group.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Satellites are polluting Earth's atmosphere with heavy metals. Could refueling them in orbit help?
Satellites are polluting Earth's atmosphere with heavy metals. Could refueling them in orbit help?

Yahoo

time5 hours ago

  • Yahoo

Satellites are polluting Earth's atmosphere with heavy metals. Could refueling them in orbit help?

When you buy through links on our articles, Future and its syndication partners may earn a commission. The world at large is working to stop the fast-progressing degradation of Earth's environment. In the space sector, however, one-use-only products still reign supreme. The advent of megaconstellations has, in fact, accelerated the rate at which the space industry burns through resources, shifting from big satellites with decades-long lifespans to cheaper birds designed to expire within a few short years. The disposable approach worries some researchers, as too much aluminum is burning up in the atmosphere these days, threatening to cause a new kind of environmental disaster in the decades to come. But what can we do? Should we roll back the space revolution and put a cap on what we can do in space? Or could a circular economy, life extension, recycling and reuse be the solution to the space industry's dirty side effects? Proponents of in-orbit servicing and refueling laud the technology's potential. But most analysts remain cautious: Without strict environmental regulations, the expected cost of in-orbit servicing may not entice satellite operators to switch to reusable technology en masse. Dave Barnhart, chief executive officer of the California-based aerospace company Arkisys, first began developing concepts of recyclable satellite technology some 15 years ago as part of a project he oversaw at DARPA (the Defense Advanced Research Projects Agency). He and his colleagues investigated how to set up a satellite recycling facility in geostationary orbit — the region about 22,000 miles (36,000 kilometers) above Earth's surface where satellites appear fixed above one spot above the equator. "We wanted to know whether we can use parts from old geo satellites to recreate new ones, because the mass is already there," Barnhart told The geostationary ring is home to some of the largest and most expensive satellites. On top of that, the long distance between Earth and this orbit makes geo missions inherently costly, as they require the most powerful rockets with a lot of fuel to reach their destination. Yet, Arkisys, the company Barnhart cofounded in 2015, is focusing on low Earth orbit (LEO) — the buzzing region closest to Earth up to altitudes of about 1,200 miles (2,000 km). Arkisyshopes to set up an in-orbit servicing and refueling depot called the Port in LEO. The main goal is to spearhead a green revolution in this region, which gives rise to thousands of tons of dangerous space debris every year. "To date, everything we have ever designed to go into space has been one mission, one life," Barnhart told "It's sort of crazy. Every other domain on Earth, we maintain, we sustain, we grow. Not in space." In 2023, Arkisys secured a $1.6 million deal from the U.S. Space Force to test satellite assembly in orbit using the Port demo module — a basic building block of a scalable orbiting garage and gas station. The company wants to launch the first component of this orbital depot next year — a last-mile transportation device called the Cutter, which is designed to help satellites to dock with the garage. In 2027, the main Port module, a hexagonal structure about 9 feet (3 meters) wide, will join the Cutter in orbit to test how the mechanical interfaces of the two work together in space. The Port, in addition to serving as a fuel depot, will arrive with a supply of components and payloads that could be attached to worn-out satellites to give them a new lease on life. "Today, everything on a satellite is done on the ground, and the satellite is launched with an end date," Barnhart said. "We want to shift that to allow extensions of both — life and business — post-launch. We want to be able to add new revenue streams post-launch. You can do that if you can add something, change something in orbit, or even sell that satellite to somebody else who could make it part of a larger platform." Cameras or antennas could be replaced with more powerful ones once those get developed, worn-out batteries could be swapped for brand-new ones, and fuel tanks would get refilled. It all makes sense on paper, but Dafni Christodoulopoulou, space industry analyst at the consultancy company Analysis Mason, warns that whether satellite operators would be inclined to ditch their disposable ways will come down to the cost of the in-orbit maintenance services. LEO is currently dominated by small, relatively cheap satellites, she says, which can be replaced more cheaply than they can be serviced and maintained. "Right now, we expect in-orbit services to come at a cost that might be quite high for operators of small satellites," Christodoulopoulou told "The operators might not be interested in those services, because the price of building a new satellite might not be higher than that of a servicing mission." Barnhart agrees that the fledgling in-orbit servicing industry is likely to face resistance not just from operators but also from satellite manufacturers, who might feel threatened by the idea of reusability and life extension. "Every time you want to make a big shift like this, it's going to be a threat," Barnhart said. "Satellite manufacturers make money by building more satellites to throw away. It might take some time for them to see that by fitting satellites with interfaces that allow them to be serviced, they could actually add some cool functionality to them after launch." Related stories: — Kessler Syndrome and the space debris problem — Pollution from rocket launches and burning satellites could cause the next environmental emergency — 2 private satellites undock after pioneering life-extension mission Still, Christodoulopoulou thinks that in-orbit servicing will eventually make a difference to how things are done in space, and also to the state of the orbital environment. "The number of satellite launches is not expected to go down, so there will be a high need for constellation management, flexibility, disposal and life extension," she said. "I think in-orbit services can definitely help prevent the buildup of space debris and maintain long-term sustainability in orbit." The U.S. government certainly appears to think that life extension is the way forward. In addition to funding the Arkisys experiment, the Space Force also funds the Tetra-5 and Tetra-6 missions to test in-orbit refueling technologies in space. The two missions, designed to test hardware developed by Orbit Fab, Astroscale and Northrop Grumman, are set to launch in 2026 and 2027, respectively. In addition, intensifying geopolitical tensions are increasing the need for quick deployment of new systems in space, which, Barnhart says, could be more speedily addressed with servicing systems such as the Port, than by building new spacecraft from scratch on Earth. "If there is a new threat that has been identified, you might need a new type of sensor or a new payload to observe it," Barnhart said. "If we can augment the satellites that the government has already put up and provide them with a new capability, a new sensor, we can address those threats much faster." Christodoulopoulou thinks that new regulations designed to protect the environment and curb the air pollution related to satellite reentries could further help move the needle toward a less throwaway culture in space utilization. "There need to be a few changes," Christodoulopoulou said. "There needs to be more awareness among satellite operators to understand that in-orbit servicing offers a value in the long term. But also on the government side, there need to be more regulations to support the in-orbit servicing providers."

University of Utah students win NASA Lunobotics grand prize
University of Utah students win NASA Lunobotics grand prize

Yahoo

time5 hours ago

  • Yahoo

University of Utah students win NASA Lunobotics grand prize

A team of over 30 students from the University of Utah took home the prestigious grand prize from the NASA Lunobotics competition thanks to their robot. Their design won multiple awards and cemented many of the students' love of STEM, space and collaboration. The team was comprised of students from the Utah Students Robotics club. To compete, the team had to apply for the competition. Out of 70 universities, the team was selected to be one of the 30 official competitors based on their project management plan. The competition was held at the University of Central Florida May 15-17. Over the course of a year, the students prepared for the competition. Early on in the process, the students received a rubric and competition layout for what to expect. The teams then began working on the systems engineering paper, presentation demonstration and, most importantly, the robot itself. 'You are building a robot to compete in a simulated lunar environment,' explained Jeffrey Hansen, a University of Utah chemical and computer engineering student. 'The goal is to navigate through an obstacle zone and then do digging and dumping to build a berm.' Judges look at numerous factors, including the size of the berm compared to the size and energy usage and the different amounts of autonomous operations. Those areas all contributed to the four main areas of scoring: the systems engineering paper, the outreach paper, the presentation demonstration and the construction competition. After competing at Florida, the top 10 teams are chosen to go to the Kennedy Space Center and compete for the grand prize. The Utah-based team split into three different subteams, including mechanical, electrical and software teams. Supporting teams also included an admin and systems team. Frequent meetings, collaborations and trial and error were a must for the students. Hansen called their work an 'evolutionary design style.' 'We had a systems engineering approach. We did it a bit differently than we had done in the past,' Hansen elaborated. 'We decided to start with building a version of the robot that met the basic competition requirements. … Once we had that, we went through different versions to improve upon that design.' Working with 30 students was no small feat. With so many minds hard at work, it was sometimes difficult to find the direction the team wanted to take. Additionally, the challenge was extremely open-ended. As long as the robot was under the specified maximum weight and dimensions, the robot could do anything. Digging systems, electronics, batteries and microcontrollers could all be chosen by the students. Another key piece of the journey was the collaboration with the U. The students worked with the administration to build a lunar simulation to test the robot. The chance to practice before the competition was everything for the team. 'We didn't have (the simulation) done until close to the end of the year, but even that little bit of time helped,' Hansen said. 'It was quite a big process to get that approved.' When they brought their robot to the competition, the team knew they had something special. After taking home the first place in presentation and demonstration, first place in STEM engagement and outreach, second place in construction, special recognition for exceptional use of systems engineering tools and various judges' awards, the team thought they may have a chance to compete in the top 10. Their suspicions were correct. The team ecstatically welcomed the invitation to present their robot at the finals. After an excellent demonstration, the team was awarded the Artemis Award, or grand prize. 'The team just erupted in energy when we found out we won. It felt like we had accomplished everything we went there to do,' Hansen said. 'It was very emotional. It was so much work across a lot of time with so many people. It felt incredible to have all that work come together and walk on stage knowing we had done it.' The experience has helped to shape the students' futures. 'It's been absolutely incredible for getting hands-on experience. … There are real-world applications of participating in this team that I would've never experienced in any of my classes,' Hansen said. To supplement their work, the students also traveled around to numerous K-12 schools around Utah. Their presentations aimed to inspire the future generation of students to try new things, specifically in the STEM field. 'It's how we keep improving the world. It's how we've gotten to where we are today,' Hansen said. 'It's the most important thing out there.'

NASA spacecraft around the moon photographs the crash site of a Japanese company's lunar lander
NASA spacecraft around the moon photographs the crash site of a Japanese company's lunar lander

San Francisco Chronicle​

time11 hours ago

  • San Francisco Chronicle​

NASA spacecraft around the moon photographs the crash site of a Japanese company's lunar lander

CAPE CANAVERAL, Fla. (AP) — A NASA spacecraft around the moon has photographed the crash site of a Japanese company's lunar lander. NASA released the pictures Friday, two weeks after ispace's lander slammed into the moon. The images show a dark smudge where the lander, named Resilience, and its mini rover crashed into Mare Frigoris or Sea of Cold, a volcanic region in the moon's far north. A faint halo around the area was formed by the lunar dirt kicked up by the impact. NASA's Lunar Reconnaissance Orbiter captured the scene last week. The crash was the second failure in two years for Tokyo-based ispace. Company officials plan to hold a news conference next week to explain what doomed the latest mission, launched from Cape Canaveral in January. ___ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store