logo
NASA spacecraft around the moon photographs the crash site of a Japanese company's lunar lander

NASA spacecraft around the moon photographs the crash site of a Japanese company's lunar lander

CAPE CANAVERAL, Fla. (AP) — A NASA spacecraft around the moon has photographed the crash site of a Japanese company's lunar lander.
NASA released the pictures Friday, two weeks after ispace's lander slammed into the moon.
The images show a dark smudge where the lander, named Resilience, and its mini rover crashed into Mare Frigoris or Sea of Cold, a volcanic region in the moon's far north. A faint halo around the area was formed by the lunar dirt kicked up by the impact.
NASA's Lunar Reconnaissance Orbiter captured the scene last week.
The crash was the second failure in two years for Tokyo-based ispace. Company officials plan to hold a news conference next week to explain what doomed the latest mission, launched from Cape Canaveral in January.
___
The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Satellites are polluting Earth's atmosphere with heavy metals. Could refueling them in orbit help?
Satellites are polluting Earth's atmosphere with heavy metals. Could refueling them in orbit help?

Yahoo

timean hour ago

  • Yahoo

Satellites are polluting Earth's atmosphere with heavy metals. Could refueling them in orbit help?

When you buy through links on our articles, Future and its syndication partners may earn a commission. The world at large is working to stop the fast-progressing degradation of Earth's environment. In the space sector, however, one-use-only products still reign supreme. The advent of megaconstellations has, in fact, accelerated the rate at which the space industry burns through resources, shifting from big satellites with decades-long lifespans to cheaper birds designed to expire within a few short years. The disposable approach worries some researchers, as too much aluminum is burning up in the atmosphere these days, threatening to cause a new kind of environmental disaster in the decades to come. But what can we do? Should we roll back the space revolution and put a cap on what we can do in space? Or could a circular economy, life extension, recycling and reuse be the solution to the space industry's dirty side effects? Proponents of in-orbit servicing and refueling laud the technology's potential. But most analysts remain cautious: Without strict environmental regulations, the expected cost of in-orbit servicing may not entice satellite operators to switch to reusable technology en masse. Dave Barnhart, chief executive officer of the California-based aerospace company Arkisys, first began developing concepts of recyclable satellite technology some 15 years ago as part of a project he oversaw at DARPA (the Defense Advanced Research Projects Agency). He and his colleagues investigated how to set up a satellite recycling facility in geostationary orbit — the region about 22,000 miles (36,000 kilometers) above Earth's surface where satellites appear fixed above one spot above the equator. "We wanted to know whether we can use parts from old geo satellites to recreate new ones, because the mass is already there," Barnhart told The geostationary ring is home to some of the largest and most expensive satellites. On top of that, the long distance between Earth and this orbit makes geo missions inherently costly, as they require the most powerful rockets with a lot of fuel to reach their destination. Yet, Arkisys, the company Barnhart cofounded in 2015, is focusing on low Earth orbit (LEO) — the buzzing region closest to Earth up to altitudes of about 1,200 miles (2,000 km). Arkisyshopes to set up an in-orbit servicing and refueling depot called the Port in LEO. The main goal is to spearhead a green revolution in this region, which gives rise to thousands of tons of dangerous space debris every year. "To date, everything we have ever designed to go into space has been one mission, one life," Barnhart told "It's sort of crazy. Every other domain on Earth, we maintain, we sustain, we grow. Not in space." In 2023, Arkisys secured a $1.6 million deal from the U.S. Space Force to test satellite assembly in orbit using the Port demo module — a basic building block of a scalable orbiting garage and gas station. The company wants to launch the first component of this orbital depot next year — a last-mile transportation device called the Cutter, which is designed to help satellites to dock with the garage. In 2027, the main Port module, a hexagonal structure about 9 feet (3 meters) wide, will join the Cutter in orbit to test how the mechanical interfaces of the two work together in space. The Port, in addition to serving as a fuel depot, will arrive with a supply of components and payloads that could be attached to worn-out satellites to give them a new lease on life. "Today, everything on a satellite is done on the ground, and the satellite is launched with an end date," Barnhart said. "We want to shift that to allow extensions of both — life and business — post-launch. We want to be able to add new revenue streams post-launch. You can do that if you can add something, change something in orbit, or even sell that satellite to somebody else who could make it part of a larger platform." Cameras or antennas could be replaced with more powerful ones once those get developed, worn-out batteries could be swapped for brand-new ones, and fuel tanks would get refilled. It all makes sense on paper, but Dafni Christodoulopoulou, space industry analyst at the consultancy company Analysis Mason, warns that whether satellite operators would be inclined to ditch their disposable ways will come down to the cost of the in-orbit maintenance services. LEO is currently dominated by small, relatively cheap satellites, she says, which can be replaced more cheaply than they can be serviced and maintained. "Right now, we expect in-orbit services to come at a cost that might be quite high for operators of small satellites," Christodoulopoulou told "The operators might not be interested in those services, because the price of building a new satellite might not be higher than that of a servicing mission." Barnhart agrees that the fledgling in-orbit servicing industry is likely to face resistance not just from operators but also from satellite manufacturers, who might feel threatened by the idea of reusability and life extension. "Every time you want to make a big shift like this, it's going to be a threat," Barnhart said. "Satellite manufacturers make money by building more satellites to throw away. It might take some time for them to see that by fitting satellites with interfaces that allow them to be serviced, they could actually add some cool functionality to them after launch." Related stories: — Kessler Syndrome and the space debris problem — Pollution from rocket launches and burning satellites could cause the next environmental emergency — 2 private satellites undock after pioneering life-extension mission Still, Christodoulopoulou thinks that in-orbit servicing will eventually make a difference to how things are done in space, and also to the state of the orbital environment. "The number of satellite launches is not expected to go down, so there will be a high need for constellation management, flexibility, disposal and life extension," she said. "I think in-orbit services can definitely help prevent the buildup of space debris and maintain long-term sustainability in orbit." The U.S. government certainly appears to think that life extension is the way forward. In addition to funding the Arkisys experiment, the Space Force also funds the Tetra-5 and Tetra-6 missions to test in-orbit refueling technologies in space. The two missions, designed to test hardware developed by Orbit Fab, Astroscale and Northrop Grumman, are set to launch in 2026 and 2027, respectively. In addition, intensifying geopolitical tensions are increasing the need for quick deployment of new systems in space, which, Barnhart says, could be more speedily addressed with servicing systems such as the Port, than by building new spacecraft from scratch on Earth. "If there is a new threat that has been identified, you might need a new type of sensor or a new payload to observe it," Barnhart said. "If we can augment the satellites that the government has already put up and provide them with a new capability, a new sensor, we can address those threats much faster." Christodoulopoulou thinks that new regulations designed to protect the environment and curb the air pollution related to satellite reentries could further help move the needle toward a less throwaway culture in space utilization. "There need to be a few changes," Christodoulopoulou said. "There needs to be more awareness among satellite operators to understand that in-orbit servicing offers a value in the long term. But also on the government side, there need to be more regulations to support the in-orbit servicing providers."

Elon Musk trades threats with Trump: What it could mean for SpaceX, Starship in Texas
Elon Musk trades threats with Trump: What it could mean for SpaceX, Starship in Texas

Yahoo

timean hour ago

  • Yahoo

Elon Musk trades threats with Trump: What it could mean for SpaceX, Starship in Texas

When President Donald Trump took office in January, he began offering plenty of signs that his goals for U.S. spaceflight aligned closely with those of billionaire tech mogul Elon Musk. Now those goals, which included making reaching Mars during Trump's second term a top priority, appear to be up in the air with the increasingly volatile fallout between two of the world's most powerful men. As insults have turned to threats, Trump has suggested he'd hit Musk where it could hurt most: His wallet. Musk's SpaceX has spent years positioning itself at the center of American civil and military spaceflight – a profitable relationship that has made the company's founder incredibly wealthy. In response, Musk has floated – and then retracted – the idea of decommissioning a SpaceX vehicle critical to NASA's spaceflight program. Serious threats, or empty words? That remains to be seen as Musk and Trump reportedly consider a détente. In the meantime, here's what to know about what's at stake if the U.S. government's relationship with SpaceX were to crumble: U.S. spaceflight: Dozens of NASA space missions could be axed under Trump's budget The feud between Trump and his former top adviser escalated in a dramatic fashion when the president threatened to cut off the taxpayer dollars that have fueled Elon Musk's businesses, including SpaceX. "The easiest way to save money in our Budget, Billions and Billions of Dollars, is to terminate Elon's Governmental Subsidies and Contracts," Trump said in a post on his social media platform. "I was always surprised that Biden didn't do it!" In all, Musk and his businesses have received at least $38 billion in government contracts, loans, subsidies and tax credits, a Washington Post analysis found. With SpaceX as the fulcrum of much of the U.S. government's spaceflight programs, parting ways with the commercial company would leave a void that would be hard to fill. But NASA Press Secretary Bethany Stevens said in a post on social media site X that 'NASA will continue to execute upon the President's vision for the future of space.' 'We will continue to work with our industry partners to ensure the President's objectives in space are met,' Stevens wrote. Elon Musk, the world's richest man, founded SpaceX, in 2002. In July 2024, Musk announced his intentions to move his company, as well as social media platform X's headquarters, from California to Texas. The move was in response to his personal frustrations over a public school policy in California regarding transgender students. Now, the commercial spaceflight company is headquartered at Starbase in South Texas about 180 miles south of Corpus Christi. The site, which is where SpaceX has been conducting routine flight tests of its 400-foot megarocket known as Starship, was recently voted by residents to become its own city. SpaceX conducts many of its own rocket launches, most using the Falcon 9 rocket, from both California and Florida. That includes a regular cadence of deliveries of Starlink internet satellites into orbit, and occasional privately-funded commercial crewed missions on the Dragon. The most recent of SpaceX's private human spaceflights, a mission known as Fram2, took place in April. SpaceX was also famously involved in funding and operating the headline-grabbing Polaris Dawn crewed commercial mission in September 2024. SpaceX benefits from billions of dollars in contracts from NASA and the Department of Defense by providing launch services for classified satellites and other payloads. Gwynne Shotwell, CEO of SpaceX, has said the company has about $22 billion in government contracts, according to Reuters. The vast majority of that, about $15 billion, is derived from NASA. SpaceX's famous two-stage Falcon 9 rocket ‒ one of the world's most active ‒ is routinely the rocket of choice to get many NASA missions off the ground. For instance, the rocket is due in the days ahead to help propel a four-person crew of private astronauts to the International Space Station for a venture with NASA known as Axiom Mission 4. NASA also has plans to use SpaceX's Starship in its Artemis lunar missions to ferry astronauts aboard the Orion capsule from orbit to the moon's surface. The rocket, which is in development, has yet to reach orbit in any of its nine flight tests beginning in April 2023. SpaceX's Dragon capsule is also a famous vehicle that is widely used for a variety of spaceflights. The capsule, which sits atop the Falcon 9 for launches to orbit, is capable of transporting both NASA astronauts and cargo to the space station. Under NASA's commercial crew program, the U.S. space agency has been paying SpaceX for years to conduct routine spaceflights to the International Space Station using the company's own launch vehicles. The first of SpaceX's Crew missions ferrying astronauts to the orbital outpost on the Dragon began in 2020, with the tenth and most recent contingent reaching the station in March for about a six-month stay. Standing nearly 27 feet tall and about 13 feet wide, Dragon capsules can carry up to seven astronauts into orbit, though most of SpaceX's Crew missions feature a crew of four. The Dragon spacecraft also was the vehicle NASA selected to bring home the two NASA astronauts who rode the doomed Boeing Starliner capsule to the space station in June 2024. Certifying the Starliner capsule for operation would give NASA a second vehicle in addition to Dragon for regular spaceflights to orbit. Because Boeing is still developing its Starliner capsule, Dragon is the only U.S. vehicle capable of carrying astronauts to and from the space station. It's also one of four vehicles contracted to transport cargo and other supplies to the orbital laboratory. For that reason, Musk's threat Thursday, June 5 to decommission the Dragon "immediately" would be a severe blow to NASA if he were to follow through on it. Musk, though, appears to already be backing off on the suggestion, which he made in response to Trump's own threats. In response to a user who advised Musk to "Cool off and take a step back for a couple days," Musk replied: 'Good advice. Ok, we won't decommission Dragon.' Seven astronauts are aboard the International Space Station, including three Americans. Four of the astronauts rode a SpaceX Dragon to the station for a mission known as Crew-10, while the remaining three launched on a Russian Soyuz spacecraft. Contributing: Joey Garrison, Josh Meyer, USA TODAY; Reuters Eric Lagatta is the Space Connect reporter for the USA TODAY Network. Reach him at elagatta@ This article originally appeared on Corpus Christi Caller Times: SpaceX at center of Trump, Musk feud: What that could mean for Texas

Video does not show astronaut exposing 'fake' life in space
Video does not show astronaut exposing 'fake' life in space

Yahoo

timean hour ago

  • Yahoo

Video does not show astronaut exposing 'fake' life in space

"Former Astronaut Karen Nyberg Shows How NASA Fakes Space Flights.." a June 16, 2025 post on X claimed. It shares a video of a woman in front of a space station-like backdrop watching a chip bag float away from her, side-by-side with the same footage being filmed in front of a green screen. A person in a green body suit is manipulating the bag. The video garnered thousands of interactions in posts on X, Threads, Instagram and Facebook. The clip also circulated in posts making similar claims about Nyberg in French, Spanish and Italian. Nyberg is a retired NASA astronaut who completed two spaceflights during her career, including a 166-day stay on the ISS in 2013 (archived here). But she is not the woman in the green screen video. Comments on the post on X included links to previous debunks from USA Today and PolitiFact who named the woman in the video as Paige Windle. In the clip, a person off-camera is heard calling the woman Paige. Windle is the founder of a lifestyle management company and the wife of David Weiss, known online as "Flat Earth Dave," the host of "The Flat Earth Podcast." Contacted by AFP, Weiss confirmed Windle is the one on-camera. "This video never dies. It keeps coming back," Weiss said in a June 17 email. The video was originally posted on Weiss's YouTube channel as part of a series titled "Globebusters," but made no mention of Nyberg (archived here). "Someone took that clip and presented it as Karen Nyberg and it went viral a bunch of times and now it has started again," he said. He said he has repeatedly addressed the false use of the video, sharing with AFP the cover image of a YouTube video he posted in response to the false viral claims (archived here). Astronauts onboard the ISS experience microgravity, causing them and objects to float (archived here). At the altitude of the ISS, gravity is 90 percent of the total gravity one feels on Earth, but an absence of air resistance causes all objects in the ISS to fall at the same rate, producing a weightless appearance. The ISS stays afloat because it moves at a speed that matches the curve of the Earth, causing it to "fall around" the planet while staying at roughly the same altitude. The moon's orbit works in a similar way. NASA uses the ISS in part to study how extended time periods in microgravity and other conditions in space impact the human body as it prepares for future long-term missions in space. On her website, Nyberg features a video she recorded on the ISS where she worked on a quilt (archived here). Unlike in the video filmed in front of the green screen, Nyberg's hair and necklace float throughout the clip due to the microgravity conditions. AFP reached out to Nyberg's representative for comment, but a response was not forthcoming. AFP has previously debunked claims that ISS astronauts faked a video from the station.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store