logo
Europe stages a moon landing to learn how to photograph the real thing (photos)

Europe stages a moon landing to learn how to photograph the real thing (photos)

Yahoo05-06-2025

When you buy through links on our articles, Future and its syndication partners may earn a commission.
Pictures from a simulated moon landing, not designed to fool anyone into believing a fake but rather to provide a reference to make sure that we can get the best video images possible when astronauts finally do return to the moon, have been released by the European Space Agency (ESA).
When Neil Armstrong clambered down the Eagle's lander to take his "one giant leap" in 1969, it was captured by a black-and-white slow-scan television (SSTV) with a resolution of a mere 320 lines and 10 frames per second. The transmission, beamed back via NASA's Deep Space Network, was sketchy, plagued by ghosts and poor contrast. The available 900 to 1,000 kiloHertz bandwidth just wasn't sufficient to transmit in color. Things improved slightly with Apollo 12, which had a wider 2 to 3 megaHertz bandwidth that permitted color footage — at least until the video camera was accidentally pointed at the sun, the solar intensity damaging its vacuum tube.
Soon, NASA's Artemis crewed moon missions will be flying with high-definition and ultra-high definition color cameras with frame rates of up to 60 per second. But even though the technology has dramatically improved since 1969, there remain many challenges for successfully documenting a lunar landing on video. Bandwidth continues to be one of these challenges, as does the 1.3-second signal delay from the moon, dealing with bright sunlight starkly reflecting off the lunar surface, and moon dust that seems to be able to find its way into every nook and cranny.
Therefore, taking detailed images and video footage of activities on the lunar surface and transmitting them back to Earth, all within the constraints of these challenges, is an acquired skill. We can't yet just pop to the moon to practice, so the next best thing is to simulate the environment of the moon somewhere on Earth.
Indeed, this is the purpose of the LUNA facility in Cologne, Germany, which is a joint project between ESA and the German Aerospace Center (known by its German acronym DLR). The idea is to create a lunar environment that is as realistic as possible for testing robotic landers, training astronauts and practicing with equipment — including, in this case, cameras.
To that end, imaging experts from the Consultative Committee for Space Data Systems (CCSDS), which features representatives from 28 countries, have convened on LUNA to practice shooting astronauts playing make-believe in a simulated lunar environment.
Spending time at LUNA gave imaging expert Melanie Cowan, who is ESA's representative on the CCSDS' Motion Imagery and Applications Working Group team, "a glimpse of what it may be like on the moon," she said in a statement. "One cannot get any closer to the real thing. It was a special and challenging experience to film and photograph in this surreal environment."
Indeed, so realistic was this pretend moon that Cowan and fellow imaging experts had to wear protective clothing to prevent the simulated lunar dust from being breathed in, or getting in their hair or on their clothes. Dust could be a major problem for astronauts spending any appreciable time on the surface; it is so fine that it gets everywhere, sticking to surfaces and potentially clogging up equipment.
So, donned in their protective clothing reminiscent of the head-to-toe suits used in clean rooms, the imaging experts captured footage of astronauts descending from a mock lunar lander, exploring the surface and even taking a selfie — something that Neil Armstrong may have wished he'd had the opportunity to do. (There are famously few images of Armstrong on the moon, since he carried the Hasselblad camera during most of his and Buzz Aldrin's historic moonwalk.) The point behind taking the selfie was to see how much detail could be captured in the reflection on the visor of the astronaut's helmet.
The resulting images and video are intended to be used as reference files for the real thing, so that astronauts and imaging technicians can better understand what camera settings to use, and how large the resulting image or video files might be when transmitted.
"These efforts should help agencies and companies create a ground truth for video applications and equipment," said Falk Schiffner, who is the DLR representative in the CCSDS Motion Imagery and Applications Working Group. "The activities to refine video quality are not geared only to moon imagery, but to all space transmissions."
Capturing good footage on the moon is not as easy as on Earth. For one thing, because there is no appreciable atmosphere on the moon to scatter sunlight, the contrast between areas directly illuminated by the sun and areas in black shadow can lead to over-exposed daylight areas and totally black shadowed regions. And the slow rise and setting of the sun over a two-week period from any given location results in slowly changing conditions. To replicate all of this at the LUNA facility required a lot of trial and error with camera angles and lighting.
"We tried different sun simulators and techniques to replicate the lighting of the sun on the moon," said Cowan. "We investigated the effects of the shadows from the rocks and inside craters. Early tests revealed that HDR video will provide more detail in shadowed areas on the lunar surface."
Related stories:
— European Space Agency: Facts & information
— Apollo 11: First men on the moon
— NASA's Artemis program: Everything you need to know
HDR stands for "high dynamic range," which can drastically improve the contrast ratio of an image, or boost its colors. Camera manufacturer Nikon has already teamed up with NASA to develop modified Nikon Z9 cameras to be used by astronauts should they land on the moon as part of the eventual Artemis 3 mission. The Nikon Z9 possesses both HDR and UHD (ultra-high definition) capabilities that will be essential for use in the strange, stark lunar landscape.
Taking an 8K UHD video camera to the moon is one thing, but transmitting all that data back to Earth in a livestream (or as live as it can be with the 1.3-second delay) has limitations in the available bandwidth. In particular, footage containing lots of motion is referred to as an "encoder killer," as it bumps the data rate way up. In practice, data transmission from the moon will be compressed, just as it already is from the International Space Station, for example, but even then methods will have to be found to squeeze it all into the available bandwidth without losing too much data.
Help may soon be coming thanks to ESA's Moonlight initiative, which plans to launch a constellation of five satellites into orbit around the moon. Four of these spacecraft will assist future missions with navigation, and the other will provide high-data-rate communications between the lunar surface, spacecraft in lunar orbit or traveling to the moon, and ground stations on Earth. The intent is for Moonlight to be fully operational by 2030.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

ESA's Solar Orbiter Should Solve Mystery Of Sun's Outermost Atmosphere
ESA's Solar Orbiter Should Solve Mystery Of Sun's Outermost Atmosphere

Forbes

time19 minutes ago

  • Forbes

ESA's Solar Orbiter Should Solve Mystery Of Sun's Outermost Atmosphere

ESA's Solar Orbiter mission will face the Sun from within the orbit of Mercury at its closest ... More approach. The European Space Agency's Solar Orbiter mission recently stunned the world with the first-ever full images of our Sun's South pole, proving that this was going to be a mission like no other. Using an orbital gravity assist from the planet Venus, the Solar Orbiter mission spacecraft was able to maneuver into an orbit that has taken it to an angle 17 degrees below the Sun's equator. Over the coming years, the spacecraft will tilt its orbit even further, so the best views are yet to come, says ESA. The 1.2-billion-euro Solar Orbiter mission, with NASA participation, should finally help us understand the origin of the Sun's solar winds as well as our understanding of the Sun's poles. And arguably most importantly, it should solve the puzzle of why our star's outermost atmosphere, or corona, is heated to millions of degrees Kelvin and is thus so much hotter than the Sun's own surface. By contrast, our Sun's visible photosphere, or surface, averages only 5,500 degrees K. With Solar Orbiter, we are clearly seeing energy releases on the nano-flare scale, Daniel Mueller, a solar physicist and ESA project scientist for both ESA's SOHO and Solar Orbiter missions to the Sun, tells me in his office in The Netherlands. But the question is, would these nano-flares continue like that infinitely, or is there a certain lower limit to the production of these nano-flares, Mueller wonders. The puzzle is whether these nano-flares are enough to heat up the Sun's corona to the temperatures with which it is routinely measured. A Unique View Launched in 2020, from its highly elliptical orbit just inside Mercury's perihelion, the closest point in our innermost planet's solar orbit, the ESA spacecraft offers the best views yet of our own yellow dwarf star. We can see on scales down to about 200 kilometers on the Sun, which shows us a lot of dynamics of our star, says Mueller. And thanks to its newly tilted orbit around the Sun, the European Space Agency-led Solar Orbiter spacecraft is the first to image the Sun's poles from outside the ecliptic plane (the imaginary geometric plane in which our Earth orbits the Sun), says ESA. We observed the Sun's North pole at the end of this past April, says Mueller. But we passed the Southern pole first and then the Northern pole six weeks later, he says. At the moment, as seen from Earth, the Solar Orbiter is almost behind the Sun, so the data downlink has slowed to a trickle. But by early October, Mueller expects to have downloaded all the data from Solar Orbiter's Spring polar observations of the Sun. And within a matter of two to three months after the data is on the ground, the first scientific results will have been written up and submitted to journals for publication, says Mueller. These observations are also key to understanding the Sun's magnetic field and why it flips roughly every 11 years, coinciding with a peak in solar activity, says ESA. The spacecraft's instruments show that the Sun's South pole is a bit of a magnetic mess now, with both North and South polarity magnetic fields present, ESA notes. Ready To Flip Right now, there is not a clear dominant magnetic polarity, but a mix of the two, says Mueller. And that is exactly what you would expect to find during the maximum of the Sun's activity cycle, when the magnetic field is about to flip, he says. The real applications are for space weather predictions. Case in point, better space weather forecasting may have saved many of Elon Musk's 523 Starlink satellites that reentered Earth's atmosphere between 2020 and 2024. This period coincides with the rising phase of solar cycle 25, which has shown itself to be more intense than the previous solar cycle, the authors of a 2025 paper appearing in the journal Frontiers in Astronomy and Space Sciences write. Our results indisputably show that satellites reenter faster with higher geomagnetic activity, the authors note. There was a big solar storm that caused the earth's upper Earth atmosphere to expand, so, the satellites experienced more drag, and therefore didn't make it to orbit, says Mueller. One option may have been simply to hold off on launches until this increased period of solar activity enabled a less risky geomagnetic environment in Earth's upper atmosphere. The hope is that the Solar Orbiter mission and other missions like it will lead to better and more reliable space weather predictions that could potentially save hundreds of millions of dollars in the commercial satellite industry. Solar Orbiter should do its share in solving both pure solar physics conundrums as well as in more practical applications like space weather. The good news is that the spacecraft still has plenty of fuel left. Our current funding goes until the end of 2026, but because we had a picture-perfect launch provided by United Launch Alliance and NASA, we saved a lot of fuel, says Mueller. So, the onboard fuel reserves are so large that we can keep going for a long time, he says.

The European Space Agency and Dassault Aviation paving the way for potential collaborations
The European Space Agency and Dassault Aviation paving the way for potential collaborations

Business Upturn

time16 hours ago

  • Business Upturn

The European Space Agency and Dassault Aviation paving the way for potential collaborations

PRESS RELEASE June 20, 2025 The European Space Agency and Dassault Aviation paving the way for potential collaborations ESA and Dassault Aviation have identified a mutual interest in developing a closer relationship to commonly foster technology development in areas such as LEO destinations and particularly around orbital vehicules. The European Space Agency (ESA) has signed a Letter of Intent (LoI) with Dassault Aviation, a French civilian and military aircraft manufacturer recognized worldwide for its excellence, underlying their common interest to develop a closer relationship. ESA, with its ambitious strategy for space exploration, Explore2040, is seeking innovative solutions for capabilities development to reach and return from Low Earth Orbit (LEO), Moon and Mars, and supports the advancement of selected critical enabling technologies to be used and demonstrated in particular in LEO, such as hypervelocity re-entry. Dassault Aviation, also a leader in aerospace engineering, is developing its space activities with a focus on the design of a reusable spaceplane based on lifting bodies shapes that bridge aeronautical and space technologies. Their interest in automated LEO platforms suitable for commercial and institutional markets, led them to develop a vehicle concept called ' Véhicule Orbital Réutilisable de Transport et d'Exploration (VORTEX) ', designed for research in space, transport of cargo to and from space stations, and a range of in-orbit services. This project is based on a considerable expertise in spaceplanes having participated in numerous programmes like Hermes, NASA X-38 Crew Rescue vehicle, ESA Intermediate eXperimental Vehicle (IXV) demonstrator, and Airborne Reusable Hypersonic Experimental Vehicle (VEHRA) concepts. ' Dassault Aviation's decades of expertise in aeronautical and space systems, perfectly position them to pioneer critical space technologies ', said Josef Aschbacher, Director General of the European Space Agency. ' With VORTEX, Dassault is contributing to strengthening European capacities and securing sovereign access to space in a strongly growing and competitive space sector. We look forward to combining our expertise and working hand-in-hand for a stronger Europe in space.' ' Our Vortex roadmap aims to strengthen Europe's essential sovereign capabilities and meet the new challenges of the space economy. This letter of intent is a perfect recognition of the complementary expertise of the European Space Agency and Dassault Aviation in the development of critical technologies and innovative space solutions, ' declared Eric Trappier, Chaiman and CEO of Dassault Aviation. As such, the signatories of the LoI, have identified a mutual interest in developing a closer relationship with the potential to commonly derisking critical technologies as well as to further explore the potential for collaboration in areas such as LEO destinations and particularly around orbital vehicules. As such, both foresee an interest to cooperate on a scaled down suborbital version of VORTEX, serving as a testbed, with a focus on, but not limited to: Designing, testing and qualifying key technologies and components. New materials and integration processes. Assessing the feasibility to include future payloads in case of the integration of a dedicated bay on the end-product. This joint work will be based on exchanging relevant information and conducting studies or preparatory activities, to help establish respective roles and responsibilities in the realisation of potential joint activities, leveraging on each side's capabilities. ' Europe benefits from a wide range of diverse and complementary skills. Enlarging the European industrial base is key for new opportunities arising in Space Exploration, aiming at more autonomy,' said Daniel Neuenschwander, Director of Human and Robotic Exploration at ESA. About the European Space Agency The European Space Agency (ESA) provides Europe's gateway to is an intergovernmental organisation, created in 1975, with the mission to shape the development of Europe's space capability and ensure that investment in space delivers benefits to the citizens of Europe and the world. ESA has 23 Member States: Austria, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. Latvia, Lithuania and Slovakia are Associate Members. ESA has established formal cooperation with other four Member States of the EU. Canada takes part in some ESA programmes under a Cooperation Agreement. By coordinating the financial and intellectual resources of its members, ESA can undertake programmes and activities far beyond the scope of any single European country. It is working in particular with the EU on advancing the Galileo and Copernicus programmes as well as with Eumetsat for the development of meteorological missions. Learn more about ESA at

The European Space Agency and Dassault Aviation paving the way for potential collaborations
The European Space Agency and Dassault Aviation paving the way for potential collaborations

Yahoo

time19 hours ago

  • Yahoo

The European Space Agency and Dassault Aviation paving the way for potential collaborations

PRESS RELEASE June 20, 2025 The European Space Agency and Dassault Aviation paving the way for potential collaborationsThe European Space Agency (ESA) has signed a Letter of Intent (LoI) with Dassault Aviation, a French civilian and military aircraft manufacturer recognized worldwide for its excellence, underlying their common interest to develop a closer relationship. ESA, with its ambitious strategy for space exploration, Explore2040, is seeking innovative solutions for capabilities development to reach and return from Low Earth Orbit (LEO), Moon and Mars, and supports the advancement of selected critical enabling technologies to be used and demonstrated in particular in LEO, such as hypervelocity re-entry. Dassault Aviation, also a leader in aerospace engineering, is developing its space activities with a focus on the design of a reusable spaceplane based on lifting bodies shapes that bridge aeronautical and space technologies. Their interest in automated LEO platforms suitable for commercial and institutional markets, led them to develop a vehicle concept called 'Véhicule Orbital Réutilisable de Transport et d'Exploration (VORTEX)', designed for research in space, transport of cargo to and from space stations, and a range of in-orbit services. This project is based on a considerable expertise in spaceplanes having participated in numerous programmes like Hermes, NASA X-38 Crew Rescue vehicle, ESA Intermediate eXperimental Vehicle (IXV) demonstrator, and Airborne Reusable Hypersonic Experimental Vehicle (VEHRA) concepts. 'Dassault Aviation's decades of expertise in aeronautical and space systems, perfectly position them to pioneer critical space technologies', said Josef Aschbacher, Director General of the European Space Agency. 'With VORTEX, Dassault is contributing to strengthening European capacities and securing sovereign access to space in a strongly growing and competitive space sector. We look forward to combining our expertise and working hand-in-hand for a stronger Europe in space.' 'Our Vortex roadmap aims to strengthen Europe's essential sovereign capabilities and meet the new challenges of the space economy. This letter of intent is a perfect recognition of the complementary expertise of the European Space Agency and Dassault Aviation in the development of critical technologies and innovative space solutions,' declared Eric Trappier, Chaiman and CEO of Dassault Aviation. As such, the signatories of the LoI, have identified a mutual interest in developing a closer relationship with the potential to commonly derisking critical technologies as well as to further explore the potential for collaboration in areas such as LEO destinations and particularly around orbital vehicules. As such, both foresee an interest to cooperate on a scaled down suborbital version of VORTEX, serving as a testbed, with a focus on, but not limited to: Designing, testing and qualifying key technologies and components. New materials and integration processes. Assessing the feasibility to include future payloads in case of the integration of a dedicated bay on the end-product. This joint work will be based on exchanging relevant information and conducting studies or preparatory activities, to help establish respective roles and responsibilities in the realisation of potential joint activities, leveraging on each side's capabilities. 'Europe benefits from a wide range of diverse and complementary skills. Enlarging the European industrial base is key for new opportunities arising in Space Exploration, aiming at more autonomy,' said Daniel Neuenschwander, Director of Human and Robotic Exploration at ESA. About the European Space Agency The European Space Agency (ESA) provides Europe's gateway to is an intergovernmental organisation, created in 1975, with the mission to shape the development of Europe's space capability and ensure that investment in space delivers benefits to the citizens of Europe and the world. ESA has 23 Member States: Austria, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. Latvia, Lithuania and Slovakia are Associate Members. ESA has established formal cooperation with other four Member States of the EU. Canada takes part in some ESA programmes under a Cooperation Agreement. By coordinating the financial and intellectual resources of its members, ESA can undertake programmes and activities far beyond the scope of any single European country. It is working in particular with the EU on advancing the Galileo and Copernicus programmes as well as with Eumetsat for the development of meteorological missions. Learn more about ESA at Media contact: media@ About Dassault Aviation With over 10,000 military and civil aircraft delivered in more than 90 countries over the last century, Dassault Aviation has built up expertise recognized worldwide in the design, production, sale and support of all types of aircraft, ranging from the Rafale fighter, to the high-end Falcon family of business jets, military drones and space systems. In 2024, sales amounted to € 6.2 billion. Dassault Aviation has 14,600 employees. Dassault Aviation – PRESS CONTACTS Corporate Communications Stéphane Fort: +33 (0)1 47 11 86 90 - Mathieu Durand: +33 (0)1 47 11 85 88 - Export CommunicationsNathalie Bakhos Tel: +33 (0)1 47 11 84 12 Attachment PR_ESA Dassault VF 1Error in retrieving data Sign in to access your portfolio Error in retrieving data Error in retrieving data Error in retrieving data Error in retrieving data

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store