China to lend moon rocks to NASA-funded US universities
By Eduardo Baptista
SHANGHAI (Reuters) -China's national space agency announced on Thursday it would let scientists from the U.S. and allied countries analyse rocks it retrieved from the moon, Beijing's latest move to increase the international influence of its lunar exploration programme.
The announcement highlights how U.S.-China cooperation in some areas like space has not completely ended, despite tensions between the two countries over geopolitics and tariffs.
Two U.S. universities that receive NASA funding, Brown University and the State University of New York at Stony Brook, are among the seven institutions that have been allowed to borrow lunar samples China retrieved from the moon in 2020.
The remaining authorised institutions are from Japan, France, Germany, Britain, and Pakistan.
With its uncrewed Chang'e-5 mission in 2020 China became only the third country to collect rocks from the lunar surface, joining the Soviet Union and the United States, which last went to the moon and retrieved samples in 1972.
China's subsequent uncrewed Chang'e-6 mission, completed in June last year, made it the first country to bring back rocks from the side of the moon facing away from Earth.
U.S.-China cooperation on space has long been deterred by a 2011 U.S. law that seeks to ensure American technologies stay out of the hands of China's military. Under the law, NASA must work with the FBI to certify to Congress that any such talks with China would not threaten U.S. national security.
NASA head Bill Nelson told Reuters in October that NASA and the China National Space Administration (CNSA) were discussing the terms of Beijing's loan agreement for the Chang'e-5 moon rocks after he assured American lawmakers that the talks would not pose national security concerns.
Four U.S. universities had applied for access to the Chang'e-5 samples, Nelson said then, adding he thought the talks would end with China agreeing to provide access to samples.
However, he said he expects NASA to have to work with the FBI for another national security certification to enable any moon rock deliveries to U.S. universities for research.
Beijing hopes to use its space prowess to forge closer political ties with close partners and U.S. allies alike.
"It seems the United States is quite closed off now despite being open in the past, while we were closed off in the past and are now open; this is because of the increase in our nation's overall strength and consequent rise in self-confidence," Wu Weiren, chief designer of China's lunar exploration programme, told Reuters in an interview on Wednesday, adding that growing U.S. "isolationism" would not help its space ambitions.
A CNSA official said on Wednesday the Chang'e-4 and 6 missions had four international payloads, while the Chang'e-7 mission next year will have six international payloads and "cooperation with 10 countries" is being discussed for the subsequent Chang'e-8 mission.
China hopes Chang'e-7 and 8 can help provide the information it needs to decide where and how to build a permanent manned lunar base by 2035.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Washington Post
3 hours ago
- Washington Post
Blasts seen near Iran's Isfahan nuclear research facility
World Blasts seen near Iran's Isfahan nuclear research facility June 22, 2025 | 8:46 AM GMT Social media video verified by Mitchell Ulrich on X and Reuters shows strikes seen in the direction of the nuclear research facility in Isfahan, Iran.
Yahoo
6 hours ago
- Yahoo
Unsung women behind moon landing celebrated in art
More than a thousand unsung women whose circuits helped man land on the moon have inspired two Kent artists to celebrate the historic moment of 1969. The work is based on the female Navajo weavers who were employed for their perceived dexterity to make microchips in New Mexico in the sixties, which were used by NASA in the Apollo Guidance Computer. Moon Landing is by weaver Margo Selby and composer Helen Caddick is a 16m (52ft) handwoven textile suspended from The Trinity Chapel of Canterbury Cathedral, accompanied by an original score for six strings. The tapestry is described as a celebration of the crossover of mathematical patterns, tone and rhythm found in weaving and music and will remain in the chapel until 31 August. Ms Caddick said she was inspired by a weaving tool to compose music about space exploration. She said: "I had gone to see Margo weave and I noticed that she used a shuttle to move the thread along and that made me start to think about space." She added that when she had saw documentaries or films about the space shuttle, she noticed there was an "indicator light flashing in the cabin". "So so I took the rhythm of that to mirror in the harp part," she said. In turn, Ms Selby translated the musician's work into textile art. The textile artist said: "With these incredible carvings and shapes, to see my contemporary work hanging alongside them is truly thrilling." Some 1,200 indigenous people - mostly women - were employed to work at a Fairchild Semiconductor factory in Shiprock, New Mexico, from 1965, during the United States' race to the moon. The manufacturer was tasked with building complicated microchips for NASA's Apollo Guidance Computer, which was integral to space missions. A contemporary brochure from Fairchild compared the intricate work creating elaborate microchips to weaving the Navajo population's traditional tapestries. However, these women who contributed to the space race were largely overlooked in their time. The Dean of Canterbury Cathedral David Monteith said the chapel was excited to celebrate the work of art. "In life sometimes things can become a bit grey scale but this is such an assault of colour that it gladdens the heart and that's such a gift," he said. Follow BBC Kent on Facebook, on X, and on Instagram. Send your story ideas to southeasttoday@ or WhatsApp us on 08081 002250. Mars art installation on display at cathedral Girl, 8, uses dad's ham radio to chat to astronaut Canterbury Cathedral


Boston Globe
13 hours ago
- Boston Globe
It turns out weather on other planets is a lot like on Earth
Related : Advertisement But by leveraging the sheer amount of knowledge and data about our planet, scientists can get a head start on understanding the inner workings of storms or vortexes on other planetary bodies. In some cases, the models provide almost everything we know about some otherworldly atmospheric processes. 'Our planetary atmosphere models are derived almost exclusively from these Earth models,' said Scot Rafkin, a planetary meteorologist at the Southwest Research Institute. 'Studying the weather on other planets helps us with Earth and vice versa.' Satellite photo of the Baltic Sea surrounding Gotland, Sweden, with algae bloom swirling in the water. The churning clouds near Jupiter's pole appear like ocean currents on Earth — as if you're looking at small edges and meandering fronts in the Baltic Sea. European Space Agency Vortexes on Jupiter If you looked at the churning clouds near Jupiter's pole, they appear like ocean currents on Earth - as if you're looking at small edges and meandering fronts in the Baltic Sea. 'This looks so much like turbulence I'm seeing in our own ocean. They must be covered by at least some similar dynamics,' Lia Siegelman, a physical oceanographer at Scripps Institution of Oceanography, recalled the first time she saw images of vortexes from NASA's Juno mission, which entered Jupiter's orbit in 2016. Advertisement Working with planetary scientists, she applied her understanding of the ocean physics on Earth to the gas giant in computer models. Whether it's in air or water on any planet, she found the laws of physics that govern turbulent fluids is the same (even though the vortex on Jupiter is about 10 times larger than one on Earth). When cyclones and anticyclones (which spin in the opposite direction) interact in the ocean, they create a boundary of different water masses and characteristics - known as a front. She and her colleagues found the same phenomenon occurs in cyclones at Jupiter's poles, showing similar swirls. 'By studying convection on Earth, we were also able to spot that phenomenon occurring on Jupiter,' Siegelman said, even though Jupiter has relatively little data compared to Earth. Related : She and her colleagues also found a pattern never seen on Earth before: a cluster of cyclones in a symmetrical, repeating pattern near the poles of Jupiter. These 'polar vortex crystals' were observed in 2016 and have remained in place since. Despite never seeing them on Earth, she and other planetary scientists collaborated to reproduce these swirls in computer models - relying on 'just very simple physics.' 'Planetary scientists use a lot of the weather models that have been developed to study either the ocean or the atmosphere,' Siegelman said. 'By just knowing so much about the ocean and the atmosphere, we can just guide our analysis.' Advertisement This NASA handout photo shows beds of sandstone inclined to the southwest toward Mount Sharp and away from the Gale Crater rim on Mars. HANDOUT Dust storms on Mars If you plan to move to Mars, be prepared to face the dust storms. At their most intense, they can engulf the entire planet and last from days to months. The dirt can block sunlight and coat infrastructure. While scientists have observed many of these storms, they still don't know how to predict them. Dust storms operate similarly on Earth and Mars. Dust is lifted and heated, and rises like a hot-air balloon, Rafkin said. The rising air will suck in air from below to replace it. Air pressure drops near the surface, sucking in more wind that lifts the dust. As Mars spins, the angular momentum causes the dust storm to rotate. In reality, Martian dust storms are more similar to hurricanes on Earth in terms of their scale and circulation, said planetary scientist Claire Newman. She said the sources are different (Mars is a dust planet, whereas Earth is a water planet), but they have a similar effect on temperature and winds. But it's still unknown how these Martian dust storms form. On Earth, a winter storm with a cold front can lift the dust; scientists sometimes see similar dust lifting along cold fronts on Mars, but many storms just seem to pop up. Related : To predict a dust storm, scientists need to understand the circulation patterns on Mars - forecasting the cold front that can lift the dust, for instance. But it's something researchers don't yet understand. Wind measurements are scarce on Mars, aside from a few scattered measurement sites on its surface. With adjustments, Earth-based models can simulate the conditions that can lead to the uplifting winds and dust storms. 'Almost everything that we know about the circulation patterns on Mars come from models,' said Rafkin, adding that scientists 'have effectively no observations of the movement of the air on Mars.' Advertisement In this photo, sand blowing off fields creates a dust storm near Morton, Texas, in May 2021. Dust storms operate similarly on Earth and Mars. Jude Smith/Associated Press The models currently serve as the best way to understand dust storms on the Red Planet, unless more dedicated studies and stations are added, similar to Earth. 'We're basically applying these models to try and get a sense of what the environment is,' said Newman, 'before we send robots or potentially people there.' Rain on Titan The second-largest moon in our solar system, Titan is the only other known world besides Earth that has standing bodies of rivers, lakes and seas on its surface - consisting of liquid methane instead of water. That's partly why some scientists think it could be a future home for Earthlings, if we can just figure out the 750-million-mile journey and learn how to survive the minus-179 degree Celsius surface temperatures. But how did those lakes and oceans fill up? Even though it rains methane, the precipitation on Titan is very similar to that on Earth, Rafkin said. On Earth, take a chunk of air with water vapor, cool it off and the air becomes saturated to form a cloud. Those small cloud droplets can bump into one another or take in more water vapor to grow bigger. But eventually, the water vapor starts to condense into a liquid and brings rain. We've seen this process take place on Earth both naturally in the atmosphere and in labs enough times to understand the physics. But limited observations on Titan - effectively only visiting its atmosphere a handful of times - have caused scientists to turn to models. Using the same underlying physics, scientists can model the cloud-making process on this foreign body. And, the modeled clouds look a lot like the few they have observed in real life on Titan. Advertisement This November 2015 composite image made available by NASA shows an infrared view of Saturn's moon, Titan, as seen by the Cassini spacecraft. Titan is the only other known world besides Earth that has standing bodies of rivers, lakes and seas on its surface. AP 'If we try to model them and we get clouds, but they look totally bizarre and different than what we're observing, then that's an indication that maybe we're not representing the cloud processes correctly,' Rafkin said. 'But as it turns out, for the most part, when we model these things, we can produce clouds that look reasonably close to what we've observed.' Because of its incredibly dense atmosphere, Titan has storm clouds - two to four times taller than those on Earth - that are able to produce feet of methane rain. While scientists haven't observed such huge volumes, they have modeled the deluges based on the surface darkening as a storm passed - similar to how rain on soil or pavement darkens the surface on Earth. It's still a mystery where the methane comes from. But at least we know to bring a very, very sturdy raincoat if we ever visit Titan.