logo
Sacramento to release 400,000 sterile mosquitoes to fight off invasive ones

Sacramento to release 400,000 sterile mosquitoes to fight off invasive ones

CBS News05-06-2025

Sacramento aims to fight off invasive mosquitoes by releasing thousands more
Sacramento aims to fight off invasive mosquitoes by releasing thousands more
Sacramento aims to fight off invasive mosquitoes by releasing thousands more
SACRAMENTO — Sacramento is launching a new tactic to stop the spread of invasive mosquitoes that can infect people with Zika and dengue fever.
The plan, which was just approved by the Environmental Protection Agency, is to release 400,000 live mosquitoes into the environment.
"We need ways to combat these mosquitoes, which are posing a public health threat," said Luz Maria Robles with the Sacramento Yolo Mosquito and Vector Control District.
The swarm will initially be released across 100 acres of Sacramento's south Natomas neighborhood, which has been the biggest breeding ground.
To ensure the mosquitoes are safe for the public, only sterile males will be used in the program.
"Male mosquitoes do not bite, so while you might see more mosquitoes than usual, we want those males to mate with the wild females because once they do, their eggs will not hatch," Robles said.
Fresno's consolidated mosquito district was the first in California to use this technique, and they say data shows it is safe and effective.
"We had tremendous success with that program in the areas where we did release," said Jodi Holeman, manager of the Fresno abatement district. "We got in excess of 98% suppression."
If successful in south Natomas, releases could occur in other Sacramento neighborhoods, Robles said.
The Sacramento Yolo Mosquito and Vector Control District says it will cost about $33,000 to purchase the mosquitoesnd the releases are scheduled to begin on july 8th.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Thousands of asteroids and millions of galaxies shine in first images from the largest camera ever built
Thousands of asteroids and millions of galaxies shine in first images from the largest camera ever built

CNN

time30 minutes ago

  • CNN

Thousands of asteroids and millions of galaxies shine in first images from the largest camera ever built

The first test images from a groundbreaking observatory named for trailblazing astronomer Vera Rubin have captured the light from millions of distant stars and galaxies on an unprecedented scale — and are expected to reveal thousands of previously unseen asteroids. While the National Science Foundation has so far released only a couple of images and a brief video clip of the Vera C. Rubin Observatory's first imagery, more images and videos taken using the largest camera ever built are expected to be shared at 11:30 a.m. ET Monday on the agency's YouTube channel. The facility is jointly funded by the National Science Foundation and the Department of Energy's Office of Science. The new images represent just over 10 hours of test observations, offering a brief preview of the observatory's decade-long mission to explore the mysteries of the universe like never before. 'NSF-DOE Rubin Observatory will capture more information about our universe than all optical telescopes throughout history combined,' said National Science Foundation Chief of Staff Brian Stone, who is currently performing the duties of the NSF director (as the position is currently vacant). Among the observatory's initial accomplishments was the discovery of 2,104 asteroids, including seven near-Earth asteroids, that have never been seen before in our solar system. None of the newly found near-Earth asteroids pose a risk to our planet, according to scientists at the observatory. Imagery of the asteroids is expected to be shared later Monday. While ground- and space-based telescopes spot about 20,000 asteroids each year, Rubin Observatory is expected to uncover millions of the space rocks within its first two years, according to the National Science Foundation. The telescope is also considered the most effective way to spot any interstellar comets or asteroids that may travel through our solar system. The observatory's mirror design, sensitive camera and telescope speed are all the first of its kind, enabling Rubin to spot tiny, faint objects such as asteroids. The observatory will also constantly take thousands of images every night, cataloging changes in brightness to reveal otherwise hidden space rocks like near-Earth asteroids that could be on a collision course with our planet, according to the foundation. A sneak peek shared Monday includes a video made from over 1,100 images captured by the observatory that begins with a detailed look at two galaxies. The video then zooms out to showcase about 10 million galaxies spotted by the camera's wide view — roughly 0.05% of the 20 billion galaxies Rubin will observe over 10 years. The observatory team also released a mosaic of the Trifid and Lagoon nebulae, which are star-forming regions that resemble clouds located in the Sagittarius constellation. The mosaic, made up of 678 separate images taken over just seven hours, captured faint and previously invisible details such as clouds of gas and dust in the nebulae, which are several thousand light-years away from Earth. The initial images were selected to showcase the telescope's enormous field of view, which enables detailed glimpses of interacting galaxies as well as broad views of millions of galaxies, said Dr. Yusra AlSayyad, deputy associate director of the data management subsystem for the Rubin Observatory. 'It has such a wide field of view and such a rapid cadence that you do have that movielike aspect to the night sky,' said Dr. Sandrine Thomas, telescope project scientist for the Rubin Observatory. The observatory, located in the Andes on the top of Cerro Pachón in Chile, is nearly complete after about two decades of work. The facility is set to achieve 'first light,' or make the first scientific observations of the Southern Hemisphere's sky using its 8.4-meter (27.5-foot) Simonyi Survey Telescope, on July 4. The telescope's location in the Southern Hemisphere allows for a great view of the Milky Way's galactic center, said Edward Ajhar, Rubin Observatory's program officer. The region in central Chile has also been home to other ground-based observatories and is favored for astronomical observations because it affords dry air and dark skies. The observatory's main objective is the Legacy Survey of Space and Time, an ultrawide and ultra-high-definition movie of the universe made by scanning the entire sky every few nights over 10 years to capture a time-lapse compilation of whizzing asteroids and comets, exploding stars, and distant galaxies as they change. The survey is expected to begin between four to seven months after first light. '(Rubin) will enable us to explore galaxies, stars in the Milky Way, objects in the solar system, and all in a truly new way. Since we take images of the night sky so quickly and so often, (it) will detect millions of changing objects literally every night,' said Dr. Aaron Roodman, professor of particle physics and astrophysics at Stanford University's SLAC National Accelerator Laboratory in California. Roodman was responsible for the assembly and testing of Rubin Observatory's camera. Rubin's capabilities to spot interesting phenomena will also enable it to be a 'discovery machine' that can identify interesting areas of focus for other telescopes, Roodman said. The observatory could also enable the detection of previously unknown types of celestial objects. The telescope's namesake, considered to be one of the most influential women astronomers, provided some of the first evidence that dark matter existed. In Rubin's honor, the telescope is expected to continue her pioneering work. 'Through this remarkable scientific facility, we will explore many cosmic mysteries, including the dark matter and dark energy that permeate the universe,' Stone said. Dark matter is an enigmatic substance that shapes the cosmos, while dark energy is a force that accelerates the expansion rate of the universe, according to NASA. Though they are thought to make up most of the cosmos, both are impossible to directly observe but can be detected due to their gravitational effects. 'Rubin has enormous potential to help us learn what dark energy really is and how the universe's expansion is accelerating here, too,' Roodman said. 'Rubin's unique ability to see billions of galaxies and to image them repeatedly over 10 years will literally enable us to see the universe in a new way.'

Meet the climate champions working to cut emissions and create a more equitable future.
Meet the climate champions working to cut emissions and create a more equitable future.

Bloomberg

time37 minutes ago

  • Bloomberg

Meet the climate champions working to cut emissions and create a more equitable future.

As the Trump administration slashes climate funding and companies miss emissions targets, there's a growing need for innovative ways to cut carbon and adapt to a hotter world. These leaders are shielding residents from extreme heat (Yassamin Ansari), demanding richer nations spend more to protect the Global South (Chandni Raina) and deploying artificial intelligence to speed the energy transition (Jon Hennek).

Thousands of asteroids and millions of galaxies shine in first images from the largest camera ever built
Thousands of asteroids and millions of galaxies shine in first images from the largest camera ever built

CNN

time37 minutes ago

  • CNN

Thousands of asteroids and millions of galaxies shine in first images from the largest camera ever built

The first test images from a groundbreaking observatory named for trailblazing astronomer Vera Rubin have captured the light from millions of distant stars and galaxies on an unprecedented scale — and are expected to reveal thousands of previously unseen asteroids. While the National Science Foundation has so far released only a couple of images and a brief video clip of the Vera C. Rubin Observatory's first imagery, more images and videos taken using the largest camera ever built are expected to be shared at 11:30 a.m. ET Monday on the agency's YouTube channel. The facility is jointly funded by the National Science Foundation and the Department of Energy's Office of Science. The new images represent just over 10 hours of test observations, offering a brief preview of the observatory's decade-long mission to explore the mysteries of the universe like never before. 'NSF-DOE Rubin Observatory will capture more information about our universe than all optical telescopes throughout history combined,' said National Science Foundation Chief of Staff Brian Stone, who is currently performing the duties of the NSF director (as the position is currently vacant). Among the observatory's initial accomplishments was the discovery of 2,104 asteroids, including seven near-Earth asteroids, that have never been seen before in our solar system. None of the newly found near-Earth asteroids pose a risk to our planet, according to scientists at the observatory. Imagery of the asteroids is expected to be shared later Monday. While ground- and space-based telescopes spot about 20,000 asteroids each year, Rubin Observatory is expected to uncover millions of the space rocks within its first two years, according to the National Science Foundation. The telescope is also considered the most effective way to spot any interstellar comets or asteroids that may travel through our solar system. The observatory's mirror design, sensitive camera and telescope speed are all the first of its kind, enabling Rubin to spot tiny, faint objects such as asteroids. The observatory will also constantly take thousands of images every night, cataloging changes in brightness to reveal otherwise hidden space rocks like near-Earth asteroids that could be on a collision course with our planet, according to the foundation. A sneak peek shared Monday includes a video made from over 1,100 images captured by the observatory that begins with a detailed look at two galaxies. The video then zooms out to showcase about 10 million galaxies spotted by the camera's wide view — roughly 0.05% of the 20 billion galaxies Rubin will observe over 10 years. The observatory team also released a mosaic of the Trifid and Lagoon nebulae, which are star-forming regions that resemble clouds located in the Sagittarius constellation. The mosaic, made up of 678 separate images taken over just seven hours, captured faint and previously invisible details such as clouds of gas and dust in the nebulae, which are several thousand light-years away from Earth. The initial images were selected to showcase the telescope's enormous field of view, which enables detailed glimpses of interacting galaxies as well as broad views of millions of galaxies, said Dr. Yusra AlSayyad, deputy associate director of the data management subsystem for the Rubin Observatory. 'It has such a wide field of view and such a rapid cadence that you do have that movielike aspect to the night sky,' said Dr. Sandrine Thomas, telescope project scientist for the Rubin Observatory. The observatory, located in the Andes on the top of Cerro Pachón in Chile, is nearly complete after about two decades of work. The facility is set to achieve 'first light,' or make the first scientific observations of the Southern Hemisphere's sky using its 8.4-meter (27.5-foot) Simonyi Survey Telescope, on July 4. The telescope's location in the Southern Hemisphere allows for a great view of the Milky Way's galactic center, said Edward Ajhar, Rubin Observatory's program officer. The region in central Chile has also been home to other ground-based observatories and is favored for astronomical observations because it affords dry air and dark skies. The observatory's main objective is the Legacy Survey of Space and Time, an ultrawide and ultra-high-definition movie of the universe made by scanning the entire sky every few nights over 10 years to capture a time-lapse compilation of whizzing asteroids and comets, exploding stars, and distant galaxies as they change. The survey is expected to begin between four to seven months after first light. '(Rubin) will enable us to explore galaxies, stars in the Milky Way, objects in the solar system, and all in a truly new way. Since we take images of the night sky so quickly and so often, (it) will detect millions of changing objects literally every night,' said Dr. Aaron Roodman, professor of particle physics and astrophysics at Stanford University's SLAC National Accelerator Laboratory in California. Roodman was responsible for the assembly and testing of Rubin Observatory's camera. Rubin's capabilities to spot interesting phenomena will also enable it to be a 'discovery machine' that can identify interesting areas of focus for other telescopes, Roodman said. The observatory could also enable the detection of previously unknown types of celestial objects. The telescope's namesake, considered to be one of the most influential women astronomers, provided some of the first evidence that dark matter existed. In Rubin's honor, the telescope is expected to continue her pioneering work. 'Through this remarkable scientific facility, we will explore many cosmic mysteries, including the dark matter and dark energy that permeate the universe,' Stone said. Dark matter is an enigmatic substance that shapes the cosmos, while dark energy is a force that accelerates the expansion rate of the universe, according to NASA. Though they are thought to make up most of the cosmos, both are impossible to directly observe but can be detected due to their gravitational effects. 'Rubin has enormous potential to help us learn what dark energy really is and how the universe's expansion is accelerating here, too,' Roodman said. 'Rubin's unique ability to see billions of galaxies and to image them repeatedly over 10 years will literally enable us to see the universe in a new way.'

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store