The Universe's Largest Map Has Arrived, And You Can Stargaze Like Never Before
After many hours of staring unblinking at a small patch of sky, JWST has given us the most detailed map ever obtained of a corner of the Universe.
It's called the COSMOS-Web field, and if that sounds familiar, it's probably because an incredible image of it dropped just a month ago. That, however, was just a little taste of what has now come to pass.
The full, interactive map and all the data have just dropped, a map that vastly outstrips the famous Hubble Ultra Deep Field's 10,000 galaxies. The new map contains nearly 800,000 galaxies – hopefully heralding in a new era of discovery in the deepest recesses of the Universe.
"Our goal was to construct this deep field of space on a physical scale that far exceeded anything that had been done before," says physicist Caitlin Casey of the University of California Santa Barbara, who co-leads the COSMOS collaboration with Jeyhan Kartaltepe of the Rochester Institute of Technology.
"If you had a printout of the Hubble Ultra Deep Field on a standard piece of paper, our image would be slightly larger than a 13-foot by 13-foot-wide mural, at the same depth. So it's really strikingly large."
JWST is our best hope for understanding the Cosmic Dawn, the first billion or so years after the Big Bang, which took place around 13.8 billion years ago. This epoch of the Universe is extremely difficult to observe: it's very far away, and very faint. Because the Universe is expanding, the light that travels to us from greater distances is stretched into redder wavelengths.
With its powerful resolution and infrared capabilities, JWST was designed for just these observations: finding the faint light from the dawn of time which informs us on the processes that gave rise to the Universe we see around us today.
The COSMOS-Web image covers a patch of sky a little bigger than the area of 7.5 full Moons, and peers back as far as 13.5 billion years, right into the time when the opaque primordial fog that suffused the early Universe was beginning to clear.
There, the researchers are looking not just for early galaxies, they're looking for an entire cosmic ecosystem – an interactive gravitational dance of objects bound by the cosmic web of dark matter that spans the entire Universe.
JWST data collected to date indicates that even with Hubble data, we've barely scratched the surface of what lurks within the Cosmic Dawn.
"The Big Bang happens and things take time to gravitationally collapse and form, and for stars to turn on. There's a timescale associated with that," Casey says.
"And the big surprise is that with JWST, we see roughly ten times more galaxies than expected at these incredible distances. We're also seeing supermassive black holes that are not even visible with Hubble."
This profusion of well-formed galaxies hasn't just surprised astronomers – it's given them a whopping great puzzle to solve. According to our current understanding of galaxy evolution, not enough time had elapsed since the Big Bang for them to have formed.
Even one is a bit of a head-scratcher – but the numbers in which JWST is finding them just boggle the mind. With access to datasets free and available to everyone who wants to take a crack, however, we may get a few answers.
"A big part of this project is the democratization of science and making tools and data from the best telescopes accessible to the broader community," Casey says.
"The best science is really done when everyone thinks about the same data set differently. It's not just for one group of people to figure out the mysteries."
Papers on the data have been submitted to the Astrophysical Journal and Astronomy & Astrophysics. Meanwhile, you can head over to the COSMOS-Web interactive website and muck about zooming through the Universe nearly all the way back to the beginning of time.
Giant Jets Bigger Than The Milky Way Seen Shooting From Black Hole
Humanity Has Just Glimpsed Part of The Sun We've Never Seen Before
'City-Killer' Asteroid Even More Likely to Hit The Moon in 2032
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
5 hours ago
- Yahoo
How could an explosive Big Bang be the birth of our universe?
Curious Kids is a series for children of all ages. If you have a question you'd like an expert to answer, send it to curiouskidsus@ How can a Big Bang have been the start of the universe, since intense explosions destroy everything? – Tristan S., age 8, Newark, Delaware Pretend you're a perfectly flat chess piece in a game of chess on a perfectly flat and humongous chessboard. One day you look around and ask: How did I get here? How did the chessboard get here? How did it all start? You pull out your telescope and begin to explore your universe, the chessboard…. What do you find? Your universe, the chessboard, is getting bigger. And over more time, even bigger! The board is expanding in all directions that you can see. There's nothing that seems to be causing this expansion as far as you can tell – it just seems to be the nature of the chessboard. But wait a minute. If it's getting bigger, and has been getting bigger and bigger, then that means in the past, it must have been smaller and smaller and smaller. At some time, long, long ago, at the very beginning, it must have been so small that it was infinitely small. Let's work forward from what happened then. At the beginning of your universe, the chessboard was infinitely tiny and then expanded, growing bigger and bigger until the day that you decided to make some observations about the nature of your chess universe. All the stuff in the universe – the little particles that make up you and everything else – started very close together and then spread farther apart as time went on. Our universe works exactly the same way. When astronomers like me make observations of distant galaxies, we see that they are all moving apart. It seems our universe started very small and has been expanding ever since. In fact, scientists now know that not only is the universe expanding, but the speed at which it's expanding is increasing. This mysterious effect is caused by something physicists call dark energy, though we know very little else about it. Astronomers also observe something called the Cosmic Microwave Background Radiation. It's a very low level of energy that exists all throughout space. We know from those measurements that our universe is 13.8 billion years old – way, way older than people, and about three times older than the Earth. If astronomers look back all the way to the event that started our universe, we call that the Big Bang. Many people hear the name 'Big Bang' and think about a giant explosion of stuff, like a bomb going off. But the Big Bang wasn't an explosion that destroyed things. It was the beginning of our universe, the start of both space and time. Rather than an explosion, it was a very rapid expansion, the event that started the universe growing bigger and bigger. This expansion is different than an explosion, which can be caused by things like chemical reactions or large impacts. Explosions result in energy going from one place to another, and usually a lot of it. Instead, during the Big Bang, energy moved along with space as it expanded, moving around wildly but becoming more spread out over time since space was growing over time. Back in the chessboard universe, the 'Big Bang' would be like the beginning of everything. It's the start of the board getting bigger. It's important to realize that 'before' the Big Bang, there was no space and there was no time. Coming back to the chessboard analogy, you can count the amount of time on the game clock after the start but there is no game time before the start – the clock wasn't running. And, before the game had started, the chessboard universe hadn't existed and there was no chessboard space either. You have to be careful when you say 'before' in this context because time didn't even exist until the Big Bang. You also have wrap your mind around the idea that the universe isn't expanding 'into' anything, since as far as we know the Big Bang was the start of both space and time. Confusing, I know! Astronomers aren't sure what caused the Big Bang. We just look at observations and see that's how the universe did start. We know it was extremely small and got bigger, and we know that kicked off 13.8 billion years ago. What started our own game of chess? That's one of the deepest questions anyone can ask. Hello, curious kids! Do you have a question you'd like an expert to answer? Ask an adult to send your question to CuriousKidsUS@ Please tell us your name, age and the city where you live. And since curiosity has no age limit – adults, let us know what you're wondering, too. We won't be able to answer every question, but we will do our best. This article is republished from The Conversation, a nonprofit, independent news organization bringing you facts and trustworthy analysis to help you make sense of our complex world. It was written by: Michael Lam, Rochester Institute of Technology Read more: After our universe's cosmic dawn, what happened to all its original hydrogen? Hubble in pictures: astronomers' top picks Curious Kids: Can people colonize Mars? Michael Lam does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.
Yahoo
5 hours ago
- Yahoo
How could an explosive Big Bang be the birth of our universe?
Curious Kids is a series for children of all ages. If you have a question you'd like an expert to answer, send it to curiouskidsus@ How can a Big Bang have been the start of the universe, since intense explosions destroy everything? – Tristan S., age 8, Newark, Delaware Pretend you're a perfectly flat chess piece in a game of chess on a perfectly flat and humongous chessboard. One day you look around and ask: How did I get here? How did the chessboard get here? How did it all start? You pull out your telescope and begin to explore your universe, the chessboard…. What do you find? Your universe, the chessboard, is getting bigger. And over more time, even bigger! The board is expanding in all directions that you can see. There's nothing that seems to be causing this expansion as far as you can tell – it just seems to be the nature of the chessboard. But wait a minute. If it's getting bigger, and has been getting bigger and bigger, then that means in the past, it must have been smaller and smaller and smaller. At some time, long, long ago, at the very beginning, it must have been so small that it was infinitely small. Let's work forward from what happened then. At the beginning of your universe, the chessboard was infinitely tiny and then expanded, growing bigger and bigger until the day that you decided to make some observations about the nature of your chess universe. All the stuff in the universe – the little particles that make up you and everything else – started very close together and then spread farther apart as time went on. Our universe works exactly the same way. When astronomers like me make observations of distant galaxies, we see that they are all moving apart. It seems our universe started very small and has been expanding ever since. In fact, scientists now know that not only is the universe expanding, but the speed at which it's expanding is increasing. This mysterious effect is caused by something physicists call dark energy, though we know very little else about it. Astronomers also observe something called the Cosmic Microwave Background Radiation. It's a very low level of energy that exists all throughout space. We know from those measurements that our universe is 13.8 billion years old – way, way older than people, and about three times older than the Earth. If astronomers look back all the way to the event that started our universe, we call that the Big Bang. Many people hear the name 'Big Bang' and think about a giant explosion of stuff, like a bomb going off. But the Big Bang wasn't an explosion that destroyed things. It was the beginning of our universe, the start of both space and time. Rather than an explosion, it was a very rapid expansion, the event that started the universe growing bigger and bigger. This expansion is different than an explosion, which can be caused by things like chemical reactions or large impacts. Explosions result in energy going from one place to another, and usually a lot of it. Instead, during the Big Bang, energy moved along with space as it expanded, moving around wildly but becoming more spread out over time since space was growing over time. Back in the chessboard universe, the 'Big Bang' would be like the beginning of everything. It's the start of the board getting bigger. It's important to realize that 'before' the Big Bang, there was no space and there was no time. Coming back to the chessboard analogy, you can count the amount of time on the game clock after the start but there is no game time before the start – the clock wasn't running. And, before the game had started, the chessboard universe hadn't existed and there was no chessboard space either. You have to be careful when you say 'before' in this context because time didn't even exist until the Big Bang. You also have wrap your mind around the idea that the universe isn't expanding 'into' anything, since as far as we know the Big Bang was the start of both space and time. Confusing, I know! Astronomers aren't sure what caused the Big Bang. We just look at observations and see that's how the universe did start. We know it was extremely small and got bigger, and we know that kicked off 13.8 billion years ago. What started our own game of chess? That's one of the deepest questions anyone can ask. Hello, curious kids! Do you have a question you'd like an expert to answer? Ask an adult to send your question to CuriousKidsUS@ Please tell us your name, age and the city where you live. And since curiosity has no age limit – adults, let us know what you're wondering, too. We won't be able to answer every question, but we will do our best. This article is republished from The Conversation, a nonprofit, independent news organization bringing you facts and trustworthy analysis to help you make sense of our complex world. It was written by: Michael Lam, Rochester Institute of Technology Read more: After our universe's cosmic dawn, what happened to all its original hydrogen? Hubble in pictures: astronomers' top picks Curious Kids: Can people colonize Mars? Michael Lam does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.
Yahoo
19 hours ago
- Yahoo
1st images from the Vera C Rubin Observatory will drop on June 23. Here's why that's such a big deal
When you buy through links on our articles, Future and its syndication partners may earn a commission. On Monday (June 23), the public and the wider science community will get their first look at images from the Vera C. Rubin Observatory. This will arguably mark the biggest moment in astronomy since the first images from the James Webb Space Telescope (JWST) were revealed in the summer of was built by the National Science Foundation and the U.S. Department of Energy's Office of Science on the mountain Cerro Pachón, high in the dry atmosphere of northern Chile. When its operational, the observatory will construct what Director of Rubin Observatory's construction, Željko Ivezić, described as the "greatest movie of all time and the most informative map of the night sky ever assembled." The 8.4-meter telescope, equipped with the largest digital camera ever, will conduct the decade-long Legacy Survey of Space and Time (LSST), capturing the entire southern sky over Earth every 3 nights. To get you properly prepped for the first images from Rubin, spoke to an array of scientists who will work with the observatory, as well as others who are just excited to see what images and data this groundbreaking instrument is set to reveal. However, be warned: they're tight-lipped about just what images we will see."Until the images are revealed next week, all I can say is that people are going to be amazed at what we're able to see already," Andrés Alejandro Plazas Malagón, a researcher at Stanford University and part of the Rubin Observatory's Community Science Team, told "I am excited about using the largest digital camera in the world for astronomy — the LSSTCam, with 3.2 gigapixels — to survey the entire sky visible from its location in Chile over a 10-year period. This is something that has never been done before. "We will be able to gather more data than any galaxy survey to date to help answer fundamental open questions in astronomy." Mireia Montes is a Ramón y Cajal Fellow at the Institute of Space Sciences (ICE-CSIC) who will use Rubin to track stars drifting between galaxies via the faint "intracluster light" they emit."Rubin is exciting because it is going to be huge! Surveys are normally limited by how much area they cover or how deep they go, following a method called the 'wedding cake strategy'," Montes said."This means they cover a large area but are not very detailed, or small areas in great detail. Large areas are good for having lots of galaxies, but depth is better for seeing faint things like the details of galaxies or very distant galaxies. You usually choose whether to go for depth or area. Rubin is going to provide both depth and area! This will help us to see things that are not usually very clear. "The general public will see that the night sky is not as dark as we see it. In fact, when you look at deep images, you can see that there are objects (like stars and galaxies) everywhere you look. I think people are going to be amazed by the number of objects in this image, just as we were by the Hubble Deep Field ... but on a very different scale, as Rubin's camera is huge. Rubin is going to show us the universe in a totally new way!" The wide-field view of Rubin will see the LSST gather data that could finally solve lingering mysteries surrounding dark energy, the force that accounts for around 68% of our universe's matter-energy content and causes the expansion of the cosmos to accelerate. It is somewhat startling to consider that despite all of humanity's advances in science, we still only know what around 5% of the universe's contents are. All stars, planets, moons, animals, plants, and inanimate objects, everything we see is "baryonic matter" composed of atoms, but there is a lot more to the universe than this. The rest of the matter-energy content is known as the "dark universe." Rubin has the right stuff to shine a light on the dark universe, which is divided into dark energy and dark matter, both of which account for about 17% of the universe's matter and energy but remains invisible because it doesn't interact with light. "Studies of dark energy and dark matter are highly complementary with the Rubin Observatory and its LSST," Plazas Malagón said. "For dark energy, the LSST will measure the shapes and properties of billions of galaxies — an order of magnitude more than current photometric galaxy surveys — across cosmic time. "This will allow Rubin to probe the growth of the large-scale structure of the universe, namely the cosmic web, which is dominated by dark matter, and the expansion history of the universe." Plazas Malagón explained that the LSST will revolutionize the study of dark matter by mapping the sky with unprecedented depth and precision. This will enable the detection of the smallest dark matter halos that surround small satellite dwarf galaxies and wrap around stellar streams. The observatory will also use a phenomenon first predicted in 1916 by Einstein called "gravitational lensing" to investigate the distribution of dark matter through large galaxies."It will test dark matter properties such as self-interactions, warm or ultra-light masses, and the presence of compact objects like primordial black holes," Plazas Malagón continued. "The LSST will also constrain exotic dark matter models — including axion-like particles — through stellar population measurements, and provide high-resolution maps of large-scale structure to explore how dark matter and dark energy interact. "Combined with other experiments, LSST will offer powerful, complementary tests of dark matter's fundamental nature." Among the most curious dark energy findings since its discovery in 1998 are hints from the Dark Energy Spectroscopic Instrument (DESI) that this mysterious force is weakening over time. The wide-field view of Rubin could help confirm this, which would prompt revisions to the standard model of cosmology, or Lambda Cold Dark Matter (LCDM), a model built on a constant dark energy strength. "The LSST will collect vastly more data, which will help determine whether this is a real effect or just a fluctuation," Plazas Malagón explained. "In addition to studying dark energy, LSST will allow us to test the standard model of cosmology in other ways—examining the cold dark matter and dark energy hypotheses in the context of alternative models, including modified theories of gravity." Luz Ángela García Peñaloza is a cosmologist in Bogotá, Colombia, specializing in dark energy. She explained why she is so excited about Rubin, its first images, and its ongoing mission. "Rubin's first image release is an incredible milestone for the astronomical community. This observatory will cover the largest patch of the sky ever, capturing the light of approximately 20 billion galaxies. Rubin (or LSST) is not only an impressive telescope that will complement the cosmic cartography we are doing with other galaxy surveys, but also a fantastic piece of engineering that will be online for the next 10 years. We don't know yet what kind of images they will release on Monday, but I'm looking forward to seeing a deep field with tens of thousands of galaxies and stars. Remarkably, Vera Rubin is going to observe many, many galaxies in one night; thus, I expect to see beautiful images of the sky. Rubin will help us constrain the Large Scale Structure of the universe and, along the same lines, the nature and dynamics of dark energy." While Rubin will excel at studying galaxies en masse, some scientists will be interested in using its detailed view to look at what lies between those galaxies, namely, faint intracuster light. "These processes are linked to the formation of clusters of galaxies, which are the largest structures bound by gravity in the universe," Mireia Montes is a Ramón y Cajal Fellow at the Institute of Space Sciences (ICE-CSIC), told "Our understanding of the processes that form intracluster light is limited by small datasets. With Rubin, however, we will finally have the depth and numbers required to understand this light much better." Montes added that the filters employed by Rubin will enable astronomers to determine the type of stars between galaxies that give rise to intracluster light. That should then lead to the revelation of the origins of these "orphan" stars and how they came to drift between galaxies. Rubin may also excel in spotting another type of faint stellar outcast, so-called "failed stars" or brown dwarfs. These are bodies that form like stars from a collapsing cloud of gas and dust, but fail to gather enough mass to trigger the nuclear fusion of hydrogen to helium in their cores, the process that defines what a main sequence star infrared vision of Rubin's Simonyi Survey Telescope combined with its wide field of view and ability to see deep into space, will make it the perfect instrument for discovering faint, infrared-emitting objects like brown dwarfs. In fact, researchers have predicted that Rubin could detect thousands of brown dwarfs in the Milky Way, increasing our catalog of these "failed stars" by 20 times. That could help us better understand the mass limit at which a star "succeeds" and becomes a star rather than a brown dwarf, and thus how our galaxy took shape. Giuseppe Donatiello is an amateur astronomer from Italy who, thus far, has discovered a staggering 11 new dwarf galaxies in the local neighborhood of the Milky Way."Thanks to deep surveys, important discoveries have come in the Local Group, in particular, bizarre and decidedly unconventional objects have emerged. Rubin will certainly bring other similar discoveries, pushing their detection further," Donatiello said."The ability to go very deep will allow us to better define the timing in cosmic evolution, from the first stars to the current galaxies. Having such an instrument at our disposal does not limit the possibilities of observation, and we must have an open mind to anything new."Nature is more imaginative than we are!" This cursory list above is far from the extent of the phenomena that will be investigated by Rubin as it conducts the LSST. "There will be major improvements in almost every area of astronomy," Montes said. "Understanding better our own Milky Way, the evolution of galaxies, finding more low-mass galaxies that will allow us to understand better how galaxy formation occurs at those masses, mapping the mass of our universe, and therefore understanding better our universe." Plazas Malagón added that some of the other key questions the groundbreaking observatory could answer include: Are there undiscovered planets in the outer solar system (e.g., Planet Nine or Planet X)? What explosive and transient events occur in the universe? How do stars evolve and die? What are the electromagnetic counterparts to gravitational wave and neutrino events? What is the structure of the Milky Way's halo, disk, and bulge? What is the local galactic neighborhood like? Are there hazardous asteroids or comets that could impact Earth? Phew! Little wonder scientists (and are excited! Related Stories: — How the Rubin observatory could detect thousands of 'failed stars' — World's largest digital camera to help new Vera Rubin Observatory make a 'time-lapse record of the universe' (video) — Rubin Observatory aces 1st image tests, gets ready to use world's largest digital camera "I'm thrilled to see what the scientific community will do with this data," Alejandro Plazas concluded. "I'm especially excited about the new questions that will emerge — questions we haven't even imagined yet. We've built a discovery machine, and that's incredibly exciting to me. "One of the most exciting aspects is the unexpected discoveries that lie ahead!"