
Could the Sun Fry Earth with a Superflare?
In our daily lives, the sun seems constant and quiet, sedately shining at a steady pace. But looks can be deceiving: our star can also blast out powerful solar storms, huge explosions of energy and subatomic particles. If these are directed toward us, they can trigger auroras and disrupt our power grids, as well as play havoc with Earth-orbiting satellites.
These storms are magnetic in nature. A fundamental rule in physics is that charged particles create magnetic fields around them as they move. And the sun is brimming with charged particles because its interior is so hot that atoms there are stripped of one or more electrons, forming what we call a plasma. The superhot plasma closer to the core rises, whereas cooler plasma near the surface sinks, creating towering columns of convecting material by the millions, each carrying its own magnetic field. These fields can become entangled near the surface, sometimes snapping—like a spring under too much strain—to release enormous amounts of energy in a single intense explosion at a small spot on the sun. This sudden flash of light accompanied by a colossal burst of subatomic particles is called a solar flare.
The most powerful flare we've ever directly measured occurred in 2003, and it emitted about 7 × 10 25 joules of energy in the span of a few hours. That's roughly the amount of energy the whole sun emits in one fifth of a second, which may not sound very impressive—until you remember it comes from just a tiny, isolated region on the sun's surface!
On supporting science journalism
If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.
We also know that, historically, our star has spat out much bigger flares. High-speed subatomic particles raining down from solar storms slam into the nitrogen in our atmosphere to create an isotope called beryllium 10, or Be-10, which can be captured in polar ice after falling to Earth's surface. By examining ancient ice cores, scientists are able to obtain accurate dates for spikes in Be-10 (and other related isotopes), which can then be used to track historic solar activity.
Such isotopic spikes have revealed what may be the most powerful solar eruption in relatively recent history, an event that occurred in 7176 B.C.E. Scientists argued at first about the cause of these spikes; the sun's activity didn't seem powerful enough to create the amounts of isotopes seen. Supernovae or gamma-ray bursts could explain the spikes, too—but only by occurring rather close to our planet, and that should've left behind other forms of evidence that, so far, scientists haven't found. Consequently, the current consensus is that the sun is indeed responsible for these massive upticks in isotopes. Scientists now call these spikes ' Miyake events,' in honor of Japanese cosmic-ray physicist Fusa Miyake, a leader in discovering and understanding them.
While these flares were huge, there are reasons to suspect the sun is capable of unleashing even bigger ones. Some stars undergo what are called superflares, which are ridiculously powerful, reaching a total energy of 10 29 joules, or the equivalent of what the sun emits over the course of 20 minutes. In more human terms, that's about 300 million years' worth of our global civilization's current annual energy usage—all squeezed into a brief burst of stellar activity.
Superflares are relatively rare. Observing them in any given star would take a stroke of luck—unless you stack the odds in your favor.
That's just what an international team of astronomers did. The Kepler spacecraft monitored about half a million stars over a period of a decade, looking for telltale signs of accompanying planets. But all those data can be used for other things, too. The astronomers looked for superflares arising from more than 56,000 sunlike stars in Kepler's observations—which added up to a remarkable 220,000 total observed years of stellar activity. The researchers published the results in Science in late 2024.
By sifting through that vast dataset, the team found 2,889 likely superflares on 2,527 sunlike stars. That works out to roughly one superflare per sunlike star per century, which seems pretty terrifying because it would presumably mean the sun sends out an explosive superflare every hundred years or so.
But let's not be so hasty. For one thing, a star's rotation can powerfully influence the development of flare-spewing magnetic fields, and the rotational period was unknown for 40,000 of the study's examined stars—so it's possible this part of the sample isn't representative of the actual sun. And 30 percent of the superflare-producing stars were in binary systems with a stellar companion, which could also affect the results. The list of potential confounding variables doesn't stop here—there are several other factors that might make a seemingly sunlike star more prone to producing superflares than our own sun is.
Then again, as I already mentioned, Be-10 and other telltale isotopes can be produced in other ways that don't involve stellar flares. And, for that matter, it's not at all clear how well superflares would specifically make such particles. So although we've counted five sun-attributed Be-10 spikes across the last 10,000 years, that doesn't mean the sun has only produced that many strong flares in that time. Perhaps there were others that left more subtle, as-yet-unidentified records in the ice—or that weren't aimed at Earth and therefore produced no terrestrial isotopic signal at all.
If the sun did blow off a superflare today, what would be the effects? The impacts to life on Earth would probably be pretty minimal; our planet's magnetic field acts as a shield against incoming subatomic particles, and our atmosphere would absorb most of the associated high-energy electromagnetic radiation (such as gamma and x-rays).
Our technological civilization is another matter, though. A huge flare could fry the electronics on all but the most protected satellites and disrupt power grids to cause widespread and long-lasting blackouts. Engineers have devised safeguards to prevent damaging electrical surges from most instances of extreme space weather, but if a flare is powerful enough, there may not be much we could do to avoid severe damage.
Should we worry? The takeaway from the study is that it's possible the sun produces superflares more often than we previously thought, but this conclusion is not conclusive. So consider this research a good start—and a good argument for getting more and better information. Don't panic just yet!

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Boston Globe
11 hours ago
- Boston Globe
It turns out weather on other planets is a lot like on Earth
Related : Advertisement But by leveraging the sheer amount of knowledge and data about our planet, scientists can get a head start on understanding the inner workings of storms or vortexes on other planetary bodies. In some cases, the models provide almost everything we know about some otherworldly atmospheric processes. 'Our planetary atmosphere models are derived almost exclusively from these Earth models,' said Scot Rafkin, a planetary meteorologist at the Southwest Research Institute. 'Studying the weather on other planets helps us with Earth and vice versa.' Satellite photo of the Baltic Sea surrounding Gotland, Sweden, with algae bloom swirling in the water. The churning clouds near Jupiter's pole appear like ocean currents on Earth — as if you're looking at small edges and meandering fronts in the Baltic Sea. European Space Agency Vortexes on Jupiter If you looked at the churning clouds near Jupiter's pole, they appear like ocean currents on Earth - as if you're looking at small edges and meandering fronts in the Baltic Sea. 'This looks so much like turbulence I'm seeing in our own ocean. They must be covered by at least some similar dynamics,' Lia Siegelman, a physical oceanographer at Scripps Institution of Oceanography, recalled the first time she saw images of vortexes from NASA's Juno mission, which entered Jupiter's orbit in 2016. Advertisement Working with planetary scientists, she applied her understanding of the ocean physics on Earth to the gas giant in computer models. Whether it's in air or water on any planet, she found the laws of physics that govern turbulent fluids is the same (even though the vortex on Jupiter is about 10 times larger than one on Earth). When cyclones and anticyclones (which spin in the opposite direction) interact in the ocean, they create a boundary of different water masses and characteristics - known as a front. She and her colleagues found the same phenomenon occurs in cyclones at Jupiter's poles, showing similar swirls. 'By studying convection on Earth, we were also able to spot that phenomenon occurring on Jupiter,' Siegelman said, even though Jupiter has relatively little data compared to Earth. Related : She and her colleagues also found a pattern never seen on Earth before: a cluster of cyclones in a symmetrical, repeating pattern near the poles of Jupiter. These 'polar vortex crystals' were observed in 2016 and have remained in place since. Despite never seeing them on Earth, she and other planetary scientists collaborated to reproduce these swirls in computer models - relying on 'just very simple physics.' 'Planetary scientists use a lot of the weather models that have been developed to study either the ocean or the atmosphere,' Siegelman said. 'By just knowing so much about the ocean and the atmosphere, we can just guide our analysis.' Advertisement This NASA handout photo shows beds of sandstone inclined to the southwest toward Mount Sharp and away from the Gale Crater rim on Mars. HANDOUT Dust storms on Mars If you plan to move to Mars, be prepared to face the dust storms. At their most intense, they can engulf the entire planet and last from days to months. The dirt can block sunlight and coat infrastructure. While scientists have observed many of these storms, they still don't know how to predict them. Dust storms operate similarly on Earth and Mars. Dust is lifted and heated, and rises like a hot-air balloon, Rafkin said. The rising air will suck in air from below to replace it. Air pressure drops near the surface, sucking in more wind that lifts the dust. As Mars spins, the angular momentum causes the dust storm to rotate. In reality, Martian dust storms are more similar to hurricanes on Earth in terms of their scale and circulation, said planetary scientist Claire Newman. She said the sources are different (Mars is a dust planet, whereas Earth is a water planet), but they have a similar effect on temperature and winds. But it's still unknown how these Martian dust storms form. On Earth, a winter storm with a cold front can lift the dust; scientists sometimes see similar dust lifting along cold fronts on Mars, but many storms just seem to pop up. Related : To predict a dust storm, scientists need to understand the circulation patterns on Mars - forecasting the cold front that can lift the dust, for instance. But it's something researchers don't yet understand. Wind measurements are scarce on Mars, aside from a few scattered measurement sites on its surface. With adjustments, Earth-based models can simulate the conditions that can lead to the uplifting winds and dust storms. 'Almost everything that we know about the circulation patterns on Mars come from models,' said Rafkin, adding that scientists 'have effectively no observations of the movement of the air on Mars.' Advertisement In this photo, sand blowing off fields creates a dust storm near Morton, Texas, in May 2021. Dust storms operate similarly on Earth and Mars. Jude Smith/Associated Press The models currently serve as the best way to understand dust storms on the Red Planet, unless more dedicated studies and stations are added, similar to Earth. 'We're basically applying these models to try and get a sense of what the environment is,' said Newman, 'before we send robots or potentially people there.' Rain on Titan The second-largest moon in our solar system, Titan is the only other known world besides Earth that has standing bodies of rivers, lakes and seas on its surface - consisting of liquid methane instead of water. That's partly why some scientists think it could be a future home for Earthlings, if we can just figure out the 750-million-mile journey and learn how to survive the minus-179 degree Celsius surface temperatures. But how did those lakes and oceans fill up? Even though it rains methane, the precipitation on Titan is very similar to that on Earth, Rafkin said. On Earth, take a chunk of air with water vapor, cool it off and the air becomes saturated to form a cloud. Those small cloud droplets can bump into one another or take in more water vapor to grow bigger. But eventually, the water vapor starts to condense into a liquid and brings rain. We've seen this process take place on Earth both naturally in the atmosphere and in labs enough times to understand the physics. But limited observations on Titan - effectively only visiting its atmosphere a handful of times - have caused scientists to turn to models. Using the same underlying physics, scientists can model the cloud-making process on this foreign body. And, the modeled clouds look a lot like the few they have observed in real life on Titan. Advertisement This November 2015 composite image made available by NASA shows an infrared view of Saturn's moon, Titan, as seen by the Cassini spacecraft. Titan is the only other known world besides Earth that has standing bodies of rivers, lakes and seas on its surface. AP 'If we try to model them and we get clouds, but they look totally bizarre and different than what we're observing, then that's an indication that maybe we're not representing the cloud processes correctly,' Rafkin said. 'But as it turns out, for the most part, when we model these things, we can produce clouds that look reasonably close to what we've observed.' Because of its incredibly dense atmosphere, Titan has storm clouds - two to four times taller than those on Earth - that are able to produce feet of methane rain. While scientists haven't observed such huge volumes, they have modeled the deluges based on the surface darkening as a storm passed - similar to how rain on soil or pavement darkens the surface on Earth. It's still a mystery where the methane comes from. But at least we know to bring a very, very sturdy raincoat if we ever visit Titan.


USA Today
a day ago
- USA Today
When is the next SpaceX rocket launch? Date, where to watch
SpaceX is set to have a launch once again in summer 2025, which comes after a recent incident: a Starship exploded while going through engine testing in Texas earlier in the week. "The spacecraft, standing nearly 400 feet tall when fully stacked, did not injure or endanger anyone when it exploded in a fireball that could be seen for miles, SpaceX said," per USA TODAY. But as usual with SpaceX, the company's next mission will go on. If you're wondering what that's all about? You've come to the right place. Here's what we know about that next mission that's set to launch this weekend: When is the next SpaceX launch? It's on Sunday, June 22. What time is the SpaceX launch? It's scheduled for 1:47 a.m. ET. What's happening in the next SpaceX launch? Per SpaceFlight Now: A SpaceX Falcon 9 rocket will launch another batch of 27 Starlink V2 Mini satellites into low Earth orbit. The rocket will take a north-easterly trajectory once it leaves the pad at Space Launch Complex 40. A little more than eight minutes after liftoff, the first stage booster, tail number B1069, flying for a 25th time, will target a landing on the droneship, 'A Shortfall of Gravitas,' positioned in the Atlantic Ocean. Where is the SpaceX craft launching from? That would be Vandenberg Space Force Base in California. How can I watch the SpaceX launch live? Check SpaceX's website to see if there's a livestream.
Yahoo
a day ago
- Yahoo
Hurricanes and sandstorms can be forecast 5,000 times faster thanks to new Microsoft AI model
When you buy through links on our articles, Future and its syndication partners may earn a commission. A new artificial intelligence (AI) model can predict major weather events faster and more accurately than some of the world's most widely used forecasting systems. The model, called Aurora, is trained on more than 1 million hours of global atmospheric data, including weather station readings, satellite images and radar measurements. Scientists at Microsoft say it's likely the largest dataset ever used to train a weather AI model. Aurora correctly forecast that Typhoon Doksuri would strike the northern Philippines four days before the storm made landfall in July 2023. At the time, official forecasts placed the storm's landfall over Taiwan — several hundred miles away. It also outperformed standard forecasting tools used by agencies, including the U.S. National Hurricane Center and the Joint Typhoon Warning Center. It delivered more accurate five-day storm tracks and produced high-resolution forecasts up to 5,000 times faster than conventional weather models powered by supercomputers. More broadly, Aurora beat existing systems in predicting weather conditions over a 14-day period in 91% of cases, the scientists said. They published their findings May 21 in the journal Nature. Researchers hope Aurora and models like it could support a new approach to predicting environmental conditions called Earth system forecasting, where a single AI model simulates weather, air quality and ocean conditions together. This could help produce faster and more consistent forecasts, especially in places that lack access to high-end computing or comprehensive monitoring infrastructure. Related: Google builds an AI model that can predict future weather catastrophes Aurora belongs to a class of large-scale AI systems known as foundation models — the same category of AI models that power tools like ChatGPT. Foundation models can be adapted to different tasks because they're designed to learn general patterns and relationships from large volumes of training data, rather than being built for a single, fixed task. In Aurora's case, the model learns to generate forecasts in a matter of seconds by analyzing weather patterns from sources like satellites, radar and weather stations, as well as simulated forecasts, the researchers said. The model can then be fine-tuned for a wide range of scenarios with relatively little extra data — unlike traditional forecasting models, which are typically built for narrow, task-specific purposes and often need retraining to adapt. The diverse dataset Aurora is trained on not only results in greater accuracy in general versus conventional methods, but also means the model is better at forecasting extreme events, researchers said. Related stories —Google's DeepMind AI can make better weather forecasts than supercomputers —Is climate change making the weather worse? —What is the Turing test? How the rise of generative AI may have broken the famous imitation game In one example, Aurora successfully predicted a major sandstorm in Iraq in 2022, despite having limited air quality data. It also outperformed wave simulation models at forecasting ocean swell height and direction in 86% of tests, showing it could extract useful patterns from complex data even when specific inputs were missing or incomplete. "It's got the potential to have [a] huge impact because people can really fine tune it to whatever task is relevant to them … particularly in countries which are underserved by other weather forecasting capabilities," study co-author Megan Stanley, a senior researcher at Microsoft, said in a statement. Microsoft has made Aurora's code and training data publicly available for research and experimentation. The model has been integrated into services like MSN Weather, which itself is integrated into tools like the Windows Weather app and Microsoft's Bing search results.