
When is the next SpaceX rocket launch? Date, where to watch
SpaceX is set to have a launch once again in summer 2025, which comes after a recent incident: a Starship exploded while going through engine testing in Texas earlier in the week.
"The spacecraft, standing nearly 400 feet tall when fully stacked, did not injure or endanger anyone when it exploded in a fireball that could be seen for miles, SpaceX said," per USA TODAY.
But as usual with SpaceX, the company's next mission will go on. If you're wondering what that's all about? You've come to the right place. Here's what we know about that next mission that's set to launch this weekend:
When is the next SpaceX launch?
It's on Sunday, June 22.
What time is the SpaceX launch?
It's scheduled for 1:47 a.m. ET.
What's happening in the next SpaceX launch?
Per SpaceFlight Now:
A SpaceX Falcon 9 rocket will launch another batch of 27 Starlink V2 Mini satellites into low Earth orbit. The rocket will take a north-easterly trajectory once it leaves the pad at Space Launch Complex 40. A little more than eight minutes after liftoff, the first stage booster, tail number B1069, flying for a 25th time, will target a landing on the droneship, 'A Shortfall of Gravitas,' positioned in the Atlantic Ocean.
Where is the SpaceX craft launching from?
That would be Vandenberg Space Force Base in California.
How can I watch the SpaceX launch live?
Check SpaceX's website to see if there's a livestream.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
an hour ago
- Yahoo
SpaceX traces Starship test-stand explosion to failure of pressurized nitrogen tank
When you buy through links on our articles, Future and its syndication partners may earn a commission. SpaceX thinks it knows why its newest Starship spacecraft went boom this week. The 171-foot-tall (52-meter-tall) vehicle exploded on a test stand at SpaceX's Starbase site late Wednesday night (June 18) as the company was preparing to ignite its six Raptor engines in a "static fire" trial. A day later, SpaceX narrowed in on a likely cause. "Initial analysis indicates the potential failure of a pressurized tank known as a COPV, or composite overwrapped pressure vessel, containing gaseous nitrogen in Starship's nosecone area, but the full data review is ongoing," the company wrote in an update on Thursday (June 19). "There is no commonality between the COPVs used on Starship and SpaceX's Falcon rockets," the company added. So, launches of the workhorse Falcon 9, which has already flown 75 times in 2025, should not be affected. The Starship explosion did not cause any reported injuries; all SpaceX personnel at Starbase are safe, according to the update. People living around the site, which is near the border city of Brownsville, shouldn't be worried about contamination from the incident, SpaceX said. "Previous independent tests conducted on materials inside Starship, including toxicity analyses, confirm they pose no chemical, biological, or toxicological risks," the company wrote. "SpaceX is coordinating with local, state, and federal agencies, as appropriate, on matters concerning environmental and safety impacts." That said, the explosion did damage the area around the test stand, which is at Starbase's Massey site (not the orbital launch mount area, from which Starship lifts off). "The explosion ignited several fires at the test site which remains clear of personnel and will be assessed once it has been determined to be safe to approach," SpaceX wrote in the update. "Individuals should not attempt to approach the area while safing operations continue." Related Stories: — SpaceX's Starship explodes in Texas during preparations for 10th test flight — SpaceX reached space with Starship Flight 9 launch, then lost control of its giant spaceship (video) — Starship and Super Heavy explained Wednesday night's explosion occurred during preparations for Starship's 10th flight test, which SpaceX had hoped to launch by the end of the month. (Static fires are common prelaunch tests, performed to ensure that engines are ready to fly.) That timeline will now shift to the right, though it's not clear at the moment by how much. The incident was the latest in a series of setbacks for Starship upper stages. SpaceX lost the vehicle — also known as Ship — on the last three Starship flight tests, which launched in January, March and May of this year. Starship's first stage, called Super Heavy, has a better track record of late. For example, on Flight 7 and Flight 8, the huge booster successfully returned to Starbase, where it was caught by the launch tower's "chopstick" arms as planned.


Boston Globe
2 hours ago
- Boston Globe
It turns out weather on other planets is a lot like on Earth
Related : Advertisement But by leveraging the sheer amount of knowledge and data about our planet, scientists can get a head start on understanding the inner workings of storms or vortexes on other planetary bodies. In some cases, the models provide almost everything we know about some otherworldly atmospheric processes. 'Our planetary atmosphere models are derived almost exclusively from these Earth models,' said Scot Rafkin, a planetary meteorologist at the Southwest Research Institute. 'Studying the weather on other planets helps us with Earth and vice versa.' Satellite photo of the Baltic Sea surrounding Gotland, Sweden, with algae bloom swirling in the water. The churning clouds near Jupiter's pole appear like ocean currents on Earth — as if you're looking at small edges and meandering fronts in the Baltic Sea. European Space Agency Vortexes on Jupiter If you looked at the churning clouds near Jupiter's pole, they appear like ocean currents on Earth - as if you're looking at small edges and meandering fronts in the Baltic Sea. 'This looks so much like turbulence I'm seeing in our own ocean. They must be covered by at least some similar dynamics,' Lia Siegelman, a physical oceanographer at Scripps Institution of Oceanography, recalled the first time she saw images of vortexes from NASA's Juno mission, which entered Jupiter's orbit in 2016. Advertisement Working with planetary scientists, she applied her understanding of the ocean physics on Earth to the gas giant in computer models. Whether it's in air or water on any planet, she found the laws of physics that govern turbulent fluids is the same (even though the vortex on Jupiter is about 10 times larger than one on Earth). When cyclones and anticyclones (which spin in the opposite direction) interact in the ocean, they create a boundary of different water masses and characteristics - known as a front. She and her colleagues found the same phenomenon occurs in cyclones at Jupiter's poles, showing similar swirls. 'By studying convection on Earth, we were also able to spot that phenomenon occurring on Jupiter,' Siegelman said, even though Jupiter has relatively little data compared to Earth. Related : She and her colleagues also found a pattern never seen on Earth before: a cluster of cyclones in a symmetrical, repeating pattern near the poles of Jupiter. These 'polar vortex crystals' were observed in 2016 and have remained in place since. Despite never seeing them on Earth, she and other planetary scientists collaborated to reproduce these swirls in computer models - relying on 'just very simple physics.' 'Planetary scientists use a lot of the weather models that have been developed to study either the ocean or the atmosphere,' Siegelman said. 'By just knowing so much about the ocean and the atmosphere, we can just guide our analysis.' Advertisement This NASA handout photo shows beds of sandstone inclined to the southwest toward Mount Sharp and away from the Gale Crater rim on Mars. HANDOUT Dust storms on Mars If you plan to move to Mars, be prepared to face the dust storms. At their most intense, they can engulf the entire planet and last from days to months. The dirt can block sunlight and coat infrastructure. While scientists have observed many of these storms, they still don't know how to predict them. Dust storms operate similarly on Earth and Mars. Dust is lifted and heated, and rises like a hot-air balloon, Rafkin said. The rising air will suck in air from below to replace it. Air pressure drops near the surface, sucking in more wind that lifts the dust. As Mars spins, the angular momentum causes the dust storm to rotate. In reality, Martian dust storms are more similar to hurricanes on Earth in terms of their scale and circulation, said planetary scientist Claire Newman. She said the sources are different (Mars is a dust planet, whereas Earth is a water planet), but they have a similar effect on temperature and winds. But it's still unknown how these Martian dust storms form. On Earth, a winter storm with a cold front can lift the dust; scientists sometimes see similar dust lifting along cold fronts on Mars, but many storms just seem to pop up. Related : To predict a dust storm, scientists need to understand the circulation patterns on Mars - forecasting the cold front that can lift the dust, for instance. But it's something researchers don't yet understand. Wind measurements are scarce on Mars, aside from a few scattered measurement sites on its surface. With adjustments, Earth-based models can simulate the conditions that can lead to the uplifting winds and dust storms. 'Almost everything that we know about the circulation patterns on Mars come from models,' said Rafkin, adding that scientists 'have effectively no observations of the movement of the air on Mars.' Advertisement In this photo, sand blowing off fields creates a dust storm near Morton, Texas, in May 2021. Dust storms operate similarly on Earth and Mars. Jude Smith/Associated Press The models currently serve as the best way to understand dust storms on the Red Planet, unless more dedicated studies and stations are added, similar to Earth. 'We're basically applying these models to try and get a sense of what the environment is,' said Newman, 'before we send robots or potentially people there.' Rain on Titan The second-largest moon in our solar system, Titan is the only other known world besides Earth that has standing bodies of rivers, lakes and seas on its surface - consisting of liquid methane instead of water. That's partly why some scientists think it could be a future home for Earthlings, if we can just figure out the 750-million-mile journey and learn how to survive the minus-179 degree Celsius surface temperatures. But how did those lakes and oceans fill up? Even though it rains methane, the precipitation on Titan is very similar to that on Earth, Rafkin said. On Earth, take a chunk of air with water vapor, cool it off and the air becomes saturated to form a cloud. Those small cloud droplets can bump into one another or take in more water vapor to grow bigger. But eventually, the water vapor starts to condense into a liquid and brings rain. We've seen this process take place on Earth both naturally in the atmosphere and in labs enough times to understand the physics. But limited observations on Titan - effectively only visiting its atmosphere a handful of times - have caused scientists to turn to models. Using the same underlying physics, scientists can model the cloud-making process on this foreign body. And, the modeled clouds look a lot like the few they have observed in real life on Titan. Advertisement This November 2015 composite image made available by NASA shows an infrared view of Saturn's moon, Titan, as seen by the Cassini spacecraft. Titan is the only other known world besides Earth that has standing bodies of rivers, lakes and seas on its surface. AP 'If we try to model them and we get clouds, but they look totally bizarre and different than what we're observing, then that's an indication that maybe we're not representing the cloud processes correctly,' Rafkin said. 'But as it turns out, for the most part, when we model these things, we can produce clouds that look reasonably close to what we've observed.' Because of its incredibly dense atmosphere, Titan has storm clouds - two to four times taller than those on Earth - that are able to produce feet of methane rain. While scientists haven't observed such huge volumes, they have modeled the deluges based on the surface darkening as a storm passed - similar to how rain on soil or pavement darkens the surface on Earth. It's still a mystery where the methane comes from. But at least we know to bring a very, very sturdy raincoat if we ever visit Titan.

Associated Press
9 hours ago
- Associated Press
Media Advisory - Simultaneous launch of Canadian space technologies
LONGUEUIL, QC, June 21, 2025 /CNW/ - Several technologies funded by the Canadian Space Agency under the Space Technology Development Program will be launched into space by SpaceX. These projects are a testament to Canada's leadership in space innovation. These innovations demonstrate the ability of Canadian companies to develop innovative technologies that meet the needs of the space program and have strong commercial potential. Media who wish to speak with a Canadian Space Agency expert or a representative from one of these Canadian companies are asked to contact the Media Relations Office. Website: Follow us on social media! SOURCE Canadian Space Agency