
Analysing Mock Tests, Taking Timely Breaks: JEE Advanced Toppers Share Strategies To Crack IIT Exam
Kota (Rajasthan):
Toppers of this year's JEE-Advanced said analysing mock papers, focussing on NCERT textbooks, and taking timely breaks helped them crack the national engineering test.
Results of IIT entrance exam JEE-Advanced 2025 were announced on Monday morning.
In an interview with PTI, the top two rank holders shared their insights and strategies to crack what is among the toughest examinations in the country.
Rajit Gupta, the all-India topper, said he began his preparation from Class 10.
"There wasn't anything special in my preparation. My key goal was to complete the assigned tasks and solve modules on time, " said Gupta, who scored the highest 322 out of 360 on the test.
He said he also solved selective questions from HC Verma and Irodov but mainly focused on the NCERT textbook, he said.
"I didn't adhere to a specific number of hours. It entirely depended on completing an entire topic. I generally devote most of the time to studying," he added.
Gupta said he would take breaks when he got stuck on solving a question. "I would speak to my younger sister which would change my mood and would then go back to studying." His father Deepak Gupta, an engineer working in BSNL, Kota, said he had "piles of books" that went way above his head and "attempted a heap of mock papers.
Sakshyam Jindal from Hisar in Haryana, who stood second in the Common Rank List (CRL) said he was based in Kota for the last two years for preparation. Both Jindal and Gupta attended the Allen Career Institute for their preparations.
Jindal said since he felt confident about Maths, he focussed more on Physics and Chemistry.
"Regular analysis of your mock test will improve your concept. It will help you overcome panic during the examination," he said.
When asked about his future goals, Jindal said, "Primarily, my goal is to join IIT Bombay." "At present, I don't have any plans regarding going abroad for better opportunities," he added. PTI COR SKY SKY

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Time of India
2 hours ago
- Time of India
Crunchy culprit: Study shows how to tackle acrylamide in French fries
Ahmedabad: That satisfying crunch in French fries and toasted sandwiches might be coming at a hidden cost. The crunch is attributed to a substance identified as acrylamide, which gives the distinct brown colour to deep-fried foods. According to several studies, the substance is linked to various gastrointestinal (GI) issues and can even lead to cancer if consumed very frequently. Research carried out at IIT Gandhinagar (IIT-Gn) addressed the issue by using amino acid adducts (AAA). The findings were published in the form of a paper titled 'Sequestration of acrylamide as amino acid-acrylamide adducts mitigates cellular stress in human gastrointestinal cell lines' recently in the journal, Food and Function, of the UK-based Royal Society of Chemistry. The authors were Axita Patel and Prof Bhaskar Datta. "Starchy foods exposed to frying, baking or roasting are vulnerable to forming acrylamide through a chemical reaction between a natural sugar (glucose) and an amino acid (asparagine). This reaction is identified as the Maillard reaction. Acrylamide is commonly found in fried potato products (French fries, chips), biscuits, toast, cookies and coffee, to name a few," said Prof Datta. by Taboola by Taboola Sponsored Links Sponsored Links Promoted Links Promoted Links You May Like Irish homeowners eligible for solar 'bonus' if they live in these eircodes Activ8 Learn More Undo "Before its association with food, it was always associated with the chemical industry as a versatile petrochemical. " The researchers said that the rise in foods prepared at high temperatures has resulted in higher exposure to acrylamide. Acrylamide's toxic effects create oxidative stress, which affects cells in the GI tract, causing inflammation, tissue damage and even cancer. Prof Datta said that to counter acrylamide, they employed AAA. The interaction of AAA as a 'treatment agent' indicated significantly lower production of acrylamide. The team used amino acids lysine, glycine, cysteine and methionine to form stable adducts to capture acrylamide. The team is also working on sprinkle-type formulations that can be applied to raw potatoes before frying. "The study opens a new way to look at 'capturing' acrylamide to reduce its harmful effects through specific amino acids and also underlines the reason for avoiding fried starchy food not only for cholesterol but also for acrylamide. Regular consumption of antioxidants is also important," said Prof Datta. He gave a practical tip to French fries enthusiasts. "As evident in our work, a simple blanching of potatoes (briefly submerged in very hot water and then quickly cooled in ice water) before they are fried can reduce the acrylamide content," he said.


The Hindu
7 hours ago
- The Hindu
With money and manpower, India could achieve quantum satellite communication by 2030, says expert
India could be technologically capable of 'quantum communication' using satellites in the 'next half a decade' Professor Bhaskar Kanseri of the Indian Institute of Technology (IIT)-Delhi, whose team recently reported an instance of quantum key distribution one kilometre apart — the farthest such transmission in India, without any connecting cables — told The Hindu in an interview. This, however, would require large teams of well-funded multidisciplinary experts and the involvement of start-ups which are specifically geared towards such ends, Prof. Kanseri said. Safe quantum communication requires enabling a sender and receiver to get 'quantum keys', which are made of streams of photons — the carriers of light. Quantum Key Distribution (QKD) employs principles of quantum mechanics: the incompletely understood principles underlying the behaviour of atomic and sub-atomic particles, including photons. While there are a couple of approaches in using QKD, one of them — said to be the most secure but technically harder to implement — uses quantum entanglement. Pairs of photons are naturally 'entangled', in a way that a change in one instantaneously reflects in the other. Applying this to encryption means that even the mere attempt by a potential hacker into a QKD-secured transmission of information becomes apparent to those communicating, thus allowing preventive measures. While generating such secure keys can be done through physical networks, including fibre optic cables, the goal is to be able to do it in 'free-space' or without such intervening wires. This is because the cost of such transmissions using cables rapidly rises once the sender and receiver are hundreds of kilometres apart. Thus the ideal step would be to involve satellites, which can act as an intermediary between any two points even if they are thousands of kilometres apart. However, using fibre optic cables provides a stable channel for quantum communication which free-space channels do not. Atmospheric disturbances such as turbulence, air flow, pollution, etc., particularly in a city such as the Delhi National Capital Region, made it more 'challenging' to demonstrate free-space quantum communication. 'The photon beam of quantum channel diverges and wanders due to these disturbances and results in more errors. Owing to these reasons, the error rates are generally higher than the fibre ones. However, with better beam control and optimisation, there is a scope to reduce these errors,' Prof. Kanseri said. China had demonstrated satellite-based quantum communication nearly one decade ago, as they had a head start in quantum communication activities since the early 2000s, he surmised. 'I strongly believe that India, which started quite recently (in the 2020s), will achieve it in next half-a-decade or so, as under the National Quantum Mission (NQM), a strong focus is to develop satellite-based long distance quantum communication,' Prof. Kanseri, who is currently in the U.S., said in an email. As an academic institute, IIT-Delhi's experiments in quantum communication so far were 'proof of concept (POC) nature' conducted with a small team of four to five students, explained Prof Kanseri. 'Satellite based quantum communication would be one of the biggest projects and require not only adequate funds but also a large, dedicated team of multidisciplinary skilled experts for developing several types of enabling technologies. Quantum startups, mentored by researchers working in quantum technologies, if funded adequately, can contribute immensely in translation of technologies from lab to market, and in prototyping quantum technologies in a focussed and faster manner. In addition, indigenous development of needed equipment and components is also required,' Prof. Kanseri said. In 2017 and 2020, researchers at the University of Science and Technology of China, during multiple instances, generated quantum keys involving a satellite (500 km above the ground) and ground stations 1,000 and 1,700-km apart. Since 2005, there have been ground demonstrations in Europe, Canada, and the United States of free-space (without cables) QKD greater than 100 km, suggesting that India still has much to cover regarding QKD-entanglement communication. In January 27, 2022, scientists from the Department of Space (DOS), namely, Space Applications Centre (SAC) and Physical Research Laboratory (PRL), both in Ahmedabad, jointly demonstrated quantum entanglement based real time Quantum Key Distribution (QKD) over a 300-metre atmospheric channel. In 2021, a team of scientists led by Urbasi Sinha demonstrated perhaps the first instances of such free-space communication in Bangalore over building separated by 50 metres. Quantum key distributions over much greater distances have been achieved over optical fibre networks. Prof. Kanseri's team demonstrated an intercity quantum-communication link between Vindhyachal and Prayagraj in 2022, using commercial grade underground dark optical fibre. In 2024, the team successfully distributed quantum keys using entanglement over a 100 km spool of telecom-grade optical fibre in another project supported by the Defence Research and Development Organisation.
&w=3840&q=100)

Business Standard
10 hours ago
- Business Standard
Dark energy discovery changed understanding of universe: Nobel laureate
Dark matter pulls the universe and dark energy pushes, both mysteries that endure. And the discovery that a majority of the universe is made up of stuff that makes gravity push rather than pull was a gamechanger, says Nobel laureate Brian Schmidt. The US-born Australian astronomer along with Adam Riess and Saul Perlmutter from the US discovered the stuff, later termed dark energy, in 1998. The three won the Nobel Prize for Physics in 2011. Explaining the significance of their discovery that changed the understanding of how the universe functions, Schmidt told PTI, "Dark energy is really saying (that) there is energy tied to space itself. If we didn't have dark energy, the universe would be curved and the universe wouldn't accelerate -- and that changes how cosmic objects, such as galaxies, looks. It really makes a difference," the astronomer, who was visiting Ashoka University for the Lodha Genius Programme, added. The term dark energy is intentionally similar to dark matter. Dark matter refers to particles in the universe that hold galaxies and other structures in space (the cosmos) together. It is said to have peculiar properties, such as being invisible, as it does not interact with light. However, while "dark matter and atoms (that make up ordinary matter) are pulling the universe, dark energy is pushing the universe. There's a balance at any given time of who's winning the war -- dark energy has won the war, it seems now and is pushing the universe apart", Schmidt explained. That's because dark energy had a density set at the time of the Big Bang, said the 58-year-old former president of the Australian National University and currently a distinguished professor of astronomy. The Big Bang, believed to have given birth to the universe, happened some 13.8 billion years ago. Dark matter is among the particles formed immediately after the event, gravity exerted from which is said to produce a slowing effect on the universe's evolution. "And (dark energy) stayed at that density. But as the universe expanded, and the density of atoms and dark matter dropped over time, the two crossed about 6.5 billion years back -- and that crossing meant the dark energy could take over and accelerate the universe," Schmidt said. Work on the discovery that the universe is expanding at an accelerating rate and that dark energy is the driving force began in 1994. Schmidt and colleagues intended to look at distant objects and measure how fast the universe was expanding in the past, and then look at nearer objects to see how it slowed down over time. "And if we measured the universe slowing down really quickly, then we'd know that the universe was heavy and you're gonna get a Gnab Gib -- the Big Bang in reverse. But if the universe was slowing down slowly, then we'd know the universe is light and it's gonna exist forever. So that's what we were going to do." Three and a half years later came the answer. What we saw was the universe was expanding slower in the past and it sped up. So instead of slowing down, it's actually the other way -- it's speeding up," the Nobel laureate said. In 1917, physicist Albert Einstein first imagined dark energy as a concept -- only he did not think of it in those exact words but instead accounted for it in his equations of general relativity as a 'lambda' term. Einstein is said to have considered the lambda term irrelevant, even denouncing it as his greatest blunder. "When we made our discovery of the acceleration (of the universe), it was the only sensible way of making it happen. So that thing (the lambda term), that he (Einstein) brought in 1917 and then later discarded as being irrelevant, that seems to (be validated from) what we discovered," Schmidt continued. "In 1998, cosmology was shaken at its foundations as two research teams presented their findings...," states the press release dated October 4, 2011, announcing the recipients for the Nobel Prize in Physics for 2011. The 1998 model has since been scrutinised through experiments, mainly aimed at understanding the nature of dark energy -- is it constant or does it vary? "We put in some extra knobs in the model of 1998, where we allow dark energy to change over time. The models with the most recent data seem to prefer a dark energy that changes," Schmidt said. But he is sceptical. "I'm not saying they're wrong. I'm saying I need better data to be convinced they're right. He said he is also glad that someone else is working on it. Schmidt leads the 'SkyMapper Telescope Project' for which he conducted a survey of the southern sky as seen from Australia, focussed on looking at the "oldest, first stars in the galaxy". "We could see essentially what the chemistry of the universe was back really close to the Big Bang -- because if a star was formed right after the Big Bang, it's made up of the stuff that was in the universe at the time. "And so, we found the most chemically pure stars that have ever been discovered, ones that were almost certainly not formed from the remnants of the Big Bang, but from a single exploding star after the Big Bang. That just gives us a sense of what the first stars look like," said Schmidt, who has published his findings in several journals, including Nature. Schmidt, who addressed high schoolers and others on science as a potential career at the university, advised them to get the skills that seem useful for life by working on something that interests them. Not knowing what to do in life and the fact that he enjoyed astronomy made Schmidt pursue the field. "In learning astronomy, I'd learned math, I'd learned physics, I'd learned computing, I'd learned some engineering. And (while) I didn't think it was likely that I would get a job to be an astronomer, I knew math, engineering, physics, and computing liable to give me a good job doing something. And of course, I did end up being an astronomer," he said. "You don't really know how all of this is going to come together in your life, but if you work on something you're interested in, with a set of skills that seem useful for life, then don't overthink your life, don't overplan your life," Schmidt said.