Spacecraft unveils 1st-ever images of sun's south pole: 'Beginning of a new era'
Plenty of spacecraft and telescopes have throughout the years been able to observe the sun up close – with plenty more missions on the way.
In late-December 2024, NASA's Parker Solar Probe got closer to the sun than any spacecraft before it. Earlier that same month, the European Space Agency sent a pair of satellites toward the sun to create "solar eclipses on demand."
And in March, NASA sent four small satellites on its PUNCH mission to study how the sun's outer atmosphere becomes solar wind.
But no spacecraft has ever gotten a good look at either of the sun's poles.
Until now.
In March, a spacecraft captured the first-ever clear images of the sun's south pole, which the European Space Agency released Wednesday, June 11.
'We reveal humankind's first-ever views of the sun's pole,' Carole Mundell, director of science for the European Space Agency, said in a statement. 'These new unique views from our Solar Orbiter mission are the beginning of a new era of solar science.'
Here's a look at what the Solar Orbiter captured, and why ESA officials believe it will help scientists better understand our life-giving host star.
Solar Orbiter: Newly-released photos capture the sun in highest resolution ever
Before you saw the picture above, any image you have ever seen of the sun was taken from around its equator.
Why? Because Earth, like all the planets in our solar system, orbits the sun along a line across a flat, disc-shaped plane in the sky known as the ecliptic. That means all the spacecraft we launch into orbit tend to do so as well.
But by tilting the Solar Orbiter's orbit out of that plane, the ESA was able to reveal the sun from a brand new angle.
The process began in February 2025 when the Solar Orbiter passed closely by Venus for a gravitational boost that allowed the spacecraft to push itself out of the orbital plane to see the sun at a higher angle. Then on March 23, the Solar Orbiter whizzed by the sun at an angle of 17 degrees, as compared to the 7 degree-orbit of all the planets and other sun-observing spacecraft, to get some historic snapshots of the south pole.
A few days prior, the Solar Orbiter was also able to view the sun from an angle of 15 degrees below the equator while using its fleet of on-board instruments to observe the sun in different wavelengths – including visible light and ultraviolet light.
The images were taken as the sun's peak activity, known as its solar maximum, begins to wind down. ESA scientists believe that studying the sun's polar regions could be key to unlocking secrets about the sun's 11-year solar cycle, which can cause space weather that disrupts satellites and even causes northern lights to flourish.
"The sun is our nearest star, giver of life and potential disruptor of modern space and ground power systems, so it is imperative that we understand how it works and learn to predict its behavior," Mundell said.
The Solar Orbiter launched February 2020 from Cape Canaveral Air Force Station in Florida with 10 scientific instruments to study the sun.
Its mission? Gather images of the sun from closer than any spacecraft before it and study the hot star's polar regions to understand things like the sun's atmosphere, its solar cycle and how solar wind forms.
In November, the ESA released images the Solar Orbiter obtained in March 2023 that the agency said are the highest-resolution views of the sun's surface, known as the photosphere, to date.
According to the ESA, the best views from the Solar Orbiter are yet to come.
In the coming years, the Solar Orbiter will continue to orbit around the sun at even higher angles, reaching as much as 33 degrees in July 2029.
Scientists at the ESA also expect to receive images of the north solar pole by October that the Solar Orbiter has already taken.
'This is just the first step," Daniel Müller, Solar Orbiter project scientist for the ESA, said in a statement. "In the coming years, the spacecraft will climb further out of the ecliptic plane for ever better views of the sun's polar regions."
Eric Lagatta is the Space Connect reporter for the USA TODAY Network. Reach him at elagatta@gannett.com
This article originally appeared on USA TODAY: Spacecraft captures 1st-ever images of sun's south pole: See photos
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


CNN
an hour ago
- CNN
A hunt for ghostly particles found strange signals coming from Antarctic ice. Scientists are still trying to explain them
Scientists are trying to solve a decade-long mystery by determining the identity of anomalous signals detected from below ice in Antarctica. The strange radio waves emerged during a search for another unusual phenomenon: high-energy cosmic particles known as neutrinos. Arriving at Earth from the far reaches of the cosmos, neutrinos are often called 'ghostly' because they are extremely volatile, or vaporous, and can go through any kind of matter without changing. Over the past decade, researchers have conducted multiple experiments using vast expanses of water and ice that are designed to search for neutrinos, which could shed light on mysterious cosmic rays, the most highly energetic particles in the universe. One of these projects was NASA's Antarctic Impulsive Transient Antenna, or ANITA, experiment, which flew balloons carrying instruments above Antarctica between 2006 and 2016. It was during this hunt that ANITA picked up anomalous radio waves that didn't seem to be neutrinos. The signals came from below the horizon, suggesting they had passed through thousands of miles of rock before reaching the detector. But the radio waves should have been absorbed by the rock. The ANITA team believed these anomalous signals could not be explained by the current understanding of particle physics. Follow-up observations and analyses with other instruments, including one recently conducted by the Pierre Auger Observatory in Argentina, have not been able to find the same signals. The results of the Pierre Auger Collaboration were published in the journal Physical Review Letters in March. The origin of the anomalous signals remains unclear, said study coauthor Stephanie Wissel, associate professor of physics, astronomy and astrophysics at the Pennsylvania State University. 'Our new study indicates that such (signals) have not been seen by an experiment … like the Pierre Auger Observatory,' Wissel said. 'So, it does not indicate that there is new physics, but rather more information to add to the story.' Larger, more sensitive detectors may be able to solve the mystery, or ultimately prove whether the anomalous signals were a fluke, while continuing the search for enigmatic neutrinos and their sources, scientists say. Detecting neutrinos on Earth allows researchers to trace them back to their sources, which scientists believe are primarily cosmic rays that strike our planet's atmosphere. The most highly energetic particles in the universe, cosmic rays are made up mostly of protons or atomic nuclei, and they are unleashed across the universe because whatever produces them is such a powerful particle accelerator that it dwarfs the capabilities of the Large Hadron Collider. Neutrinos could help astronomers better understand cosmic rays and what launches them across the cosmos. But neutrinos are difficult to find because they have almost no mass and can pass through the most extreme environments, like stars and entire galaxies, unchanged. They do, however, interact with water and ice. ANITA was designed to search for the highest energy neutrinos in the universe, at higher energies than have yet been detected, said Justin Vandenbroucke, an associate professor of physics at the University of Wisconsin, Madison. The experiment's radio antennae search for a short pulse of radio waves produced when a neutrino collides with an atom in the Antarctic ice, leading to a shower of lower-energy particles, he said. During its flights, ANITA found high-energy fountains of particles coming from the ice, a kind of upside-down shower of cosmic rays. The detector is also sensitive to ultrahigh energy cosmic rays that rain down on Earth and create a radio burst that acts like a flashlight beam of radio waves. When ANITA watches a cosmic ray, the flashlight beam is really a burst of radio waves one-billionth of a second long that can be mapped like a wave to show how it reflects off the ice. Twice in their data from ANITA flights, the experiment's original team spotted signals coming up through the ice at a much sharper angle than ever predicted by any models, making it impossible to trace the signals to their original sources. 'The radio waves that we detected nearly a decade ago were at really steep angles, like 30 degrees below the surface of the ice,' Wissel said. Neutrinos can travel through a lot of matter, but not all the way through the Earth, Vandenbroucke said. 'They are expected to arrive from slightly below the horizon, where there is not much Earth for them to be absorbed,' he wrote in an email. 'The ANITA anomalous events are intriguing because they appear to come from well below the horizon, so the neutrinos would have to travel through much of the Earth. This is not possible according to the Standard Model of particle physics.' The Pierre Auger Collaboration, which includes hundreds of scientists around the world, analyzed more than a decade's worth of data to try to understand the anomalous signals detected by ANITA. The team also used their observatory to try to find the same signals. The Auger Observatory is a hybrid detector that uses two methods to find and study cosmic rays. One method relies on finding high-energy particles as they interact with water in tanks on Earth's surface, and the other tracks potential interactions with ultraviolet light high in our planet's atmosphere. 'The Auger Observatory uses a very different technique to observe ultrahigh energy cosmic ray air showers, using the secondary glow of charged particles as they traverse the atmosphere to determine the direction of the cosmic ray that initiated it,' said Peter Gorham, a professor of physics at the University of Hawaii at Mānoa. 'By using computer simulations of what such a shower of particles would look like if it had behaved like the ANITA anomalous events, they are able to generate a kind of template for similar events and then search their data to see if anything like that appears.' Gorham, who was not involved with the new research, designed the ANITA experiment and has conducted other research to understand more about the anomalous signals. While the Auger Observatory was designed to measure downward-going particle showers produced in the atmosphere by ultrahigh-energy cosmic rays, the team redesigned their data analysis to search for upward-going air showers, Vandenbroucke said. Vandenbroucke did not work on the new study, but he peer-reviewed it prior to publication. 'Auger has an enormous collecting area for such events, larger than ANITA,' he said. 'If the ANITA anomalous events are produced by any particle traveling through the Earth and then producing upward-going showers, then Auger should have detected many of them, and it did not.' A separate follow-up study using the IceCube Experiment, which has sensors embedded deep in the Antarctic ice, also searched for the anomalous signals. 'Because IceCube is very sensitive, if the ANITA anomalous events were neutrinos then we would have detected them,' wrote Vandenbroucke, who served as colead of the IceCube Neutrino Sources working group between 2019 and 2022. 'It's an interesting problem because we still don't actually have an explanation for what those anomalies are, but what we do know is that they're most likely not representing neutrinos,' Wissel said. Oddly enough, a different kind of neutrino, called a tau neutrino, is one hypothesis that some scientists have put forth as the cause of the anomalous signals. Tau neutrinos can regenerate. When they decay at high energies, they produce another tau neutrino, as well as a particle called a tau lepton — similar to an electron, but much heavier. But what makes the tau neutrino scenario very unlikely is the steepness of the angle connected to the signal, Wissel said. 'You expect all these tau neutrinos to be very, very close to the horizon, like maybe one to five degrees below the horizon,' Wissel said. 'These are 30 degrees below the horizon. There's just too much material. They really would actually lose quite a bit of energy and not be detectable.' At the end of the day, Gorham and the other scientists have no idea what the origin of the anomalous ANITA events are. So far, no interpretations match up with the signals, which is what keeps drawing scientists back to try to solve the mystery. The answer may be in sight, however. Wissel is also working on a new detector, the Payload for Ultra-High Energy Observations or PUEO, that will fly over Antarctica for a month beginning in December. Larger and 10 times more sensitive than ANITA, PUEO could reveal more information on what is causing the anomalous signals detected by ANITA, Wissel said. 'Right now, it's one of these long-standing mysteries,' Wissel said. 'I'm excited that when we fly PUEO, we'll have better sensitivity. In principle, we should be able to better understand these anomalies which will go a long way to understanding our backgrounds and ultimately detecting neutrinos in the future.' Gorham said that PUEO, an acronym that references the Hawaiian owl, should have the sensitivity to capture many anomalous signals and help scientists find an answer. 'Sometimes you just have to go back to the drawing board and really figure out what these things are,' Wissel said. 'The most likely scenario is that it's some mundane physics that can be explained, but we're sort of knocking on all the doors to try to figure out what those are.'


Business Upturn
2 hours ago
- Business Upturn
The European Space Agency and Dassault Aviation paving the way for potential collaborations
PRESS RELEASE June 20, 2025 The European Space Agency and Dassault Aviation paving the way for potential collaborations ESA and Dassault Aviation have identified a mutual interest in developing a closer relationship to commonly foster technology development in areas such as LEO destinations and particularly around orbital vehicules. The European Space Agency (ESA) has signed a Letter of Intent (LoI) with Dassault Aviation, a French civilian and military aircraft manufacturer recognized worldwide for its excellence, underlying their common interest to develop a closer relationship. ESA, with its ambitious strategy for space exploration, Explore2040, is seeking innovative solutions for capabilities development to reach and return from Low Earth Orbit (LEO), Moon and Mars, and supports the advancement of selected critical enabling technologies to be used and demonstrated in particular in LEO, such as hypervelocity re-entry. Dassault Aviation, also a leader in aerospace engineering, is developing its space activities with a focus on the design of a reusable spaceplane based on lifting bodies shapes that bridge aeronautical and space technologies. Their interest in automated LEO platforms suitable for commercial and institutional markets, led them to develop a vehicle concept called ' Véhicule Orbital Réutilisable de Transport et d'Exploration (VORTEX) ', designed for research in space, transport of cargo to and from space stations, and a range of in-orbit services. This project is based on a considerable expertise in spaceplanes having participated in numerous programmes like Hermes, NASA X-38 Crew Rescue vehicle, ESA Intermediate eXperimental Vehicle (IXV) demonstrator, and Airborne Reusable Hypersonic Experimental Vehicle (VEHRA) concepts. ' Dassault Aviation's decades of expertise in aeronautical and space systems, perfectly position them to pioneer critical space technologies ', said Josef Aschbacher, Director General of the European Space Agency. ' With VORTEX, Dassault is contributing to strengthening European capacities and securing sovereign access to space in a strongly growing and competitive space sector. We look forward to combining our expertise and working hand-in-hand for a stronger Europe in space.' ' Our Vortex roadmap aims to strengthen Europe's essential sovereign capabilities and meet the new challenges of the space economy. This letter of intent is a perfect recognition of the complementary expertise of the European Space Agency and Dassault Aviation in the development of critical technologies and innovative space solutions, ' declared Eric Trappier, Chaiman and CEO of Dassault Aviation. As such, the signatories of the LoI, have identified a mutual interest in developing a closer relationship with the potential to commonly derisking critical technologies as well as to further explore the potential for collaboration in areas such as LEO destinations and particularly around orbital vehicules. As such, both foresee an interest to cooperate on a scaled down suborbital version of VORTEX, serving as a testbed, with a focus on, but not limited to: Designing, testing and qualifying key technologies and components. New materials and integration processes. Assessing the feasibility to include future payloads in case of the integration of a dedicated bay on the end-product. This joint work will be based on exchanging relevant information and conducting studies or preparatory activities, to help establish respective roles and responsibilities in the realisation of potential joint activities, leveraging on each side's capabilities. ' Europe benefits from a wide range of diverse and complementary skills. Enlarging the European industrial base is key for new opportunities arising in Space Exploration, aiming at more autonomy,' said Daniel Neuenschwander, Director of Human and Robotic Exploration at ESA. About the European Space Agency The European Space Agency (ESA) provides Europe's gateway to is an intergovernmental organisation, created in 1975, with the mission to shape the development of Europe's space capability and ensure that investment in space delivers benefits to the citizens of Europe and the world. ESA has 23 Member States: Austria, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. Latvia, Lithuania and Slovakia are Associate Members. ESA has established formal cooperation with other four Member States of the EU. Canada takes part in some ESA programmes under a Cooperation Agreement. By coordinating the financial and intellectual resources of its members, ESA can undertake programmes and activities far beyond the scope of any single European country. It is working in particular with the EU on advancing the Galileo and Copernicus programmes as well as with Eumetsat for the development of meteorological missions. Learn more about ESA at


Gizmodo
3 hours ago
- Gizmodo
NASA Aircraft Set to Perform Wild Low-Altitude Stunts Around These U.S. Cities
NASA is getting ready to fly two planes over mid-Atlantic states and parts of California, where they will be carrying out special maneuvers at a close distance while collecting valuable data about our changing planet. The two research aircraft, named P-3 Orion (N426NA) and a King Air B200 (N46L), are set to fly over Baltimore, Philadelphia, the Virginia cities of Hampton, Hopewell, and Richmond, in addition to the Los Angeles Basin, Salton Sea, and Central Valley, according to NASA. The flights will take place along the eastern coast between Sunday, June 22 and Thursday, June 26, and in California between Sunday, June 29 to Wednesday, July 2. It'll be a good opportunity to catch the two planes as they will fly at lower altitudes than most commercial flights, while pulling off specialized maneuvers like vertical spirals between 1,000 and 10,000 feet (304 to 3,048 meters), circling above power plants, landfills, and urban areas. The planes will also make missed approaches at local airports and low-altitude flybys along runways to collect air samples near the surface. The P-3, operated out of NASA's Wallops Flight Facility in Virginia, is a four-engine turboprop aircraft, carrying six science instruments. The King Air B200 is a twin-engine aircraft owned by Dynamic Aviation and contracted by NASA. The aircraft will carry out 40 hours of data collection for NASA's Student Airborne Research Program (SARP) on each U.S. coast. SARP is an eight-week summer internship program at NASA that provides undergraduate students with hands-on experience in various scientific areas. The low-altitude flights will be used to gather atmospheric data through the on board science instruments, which will be operated by the students. 'Despite SARP being a learning experience for both the students and mentors alike, our P-3 is being flown and performing maneuvers in some of most complex and restricted airspace in the country,' Brian Bernth, chief of flight operations at NASA Wallops, said in a statement. 'Tight coordination and crew resource management is needed to ensure that these flights are executed with precision but also safely.' NASA uses low altitude flights for Earth science, gathering high-resolution data that satellites can't capture at the same level of detail. These flights have typically supported research on climate change, natural disasters, and atmospheric science. The upcoming flights will take place near populated areas, so there will be plenty of chances to see the aircraft flying overhead.