Nasa rover spots strange Martian rock that looks like ‘chocolate cake'
Nasa's Curiosity rover has spotted a strange rock formation on Mars that looks like a multilayered chocolate cake.
The rover team faced a technical challenge to find a safe area on the Red Planet to deploy the space vehicle's APXS spectrometer and MAHLI camera instruments.
They eventually managed to place the APXS equipment on top of a prominent rock to study its target Martian area, including layered rocks named 'Hale Telescope' after the famous astronomical landmark in San Diego, California.
The rover imaged and conducted analyses of another target a little further from the Hale Telescope area called 'Fan Palm'.
In all, the Curiosity rover completed a drive of some 23 meters in preparation for the study plan lasting three Martian days.
Curiosity now has its instruments as well as the APXS spectrometer set on the 'cakey target', planetary scientist Scott Van Bommel from Washington University said in a Nasa blog post.
'Perhaps it was because of Easter last weekend, perhaps I needed an early lunch,' Dr VanBommel commented, 'whatever the cause, I could not shake the visual parallels between the rocks in our workspace as captured in this blog's image and a many-layered cake such as a Prinzregententorte.'
The weathering patterns on the rock formation make it look like a 'layered cake that little fingers have picked the icing off,' researchers say.
The spacecraft has undergone a new AI software upgrade, giving it greater autonomy to choose its next target, Nasa noted.
An upgraded version of the Curiosity's AEGIS instrument would enable the rover to autonomously determine the target and analyse it with its chemical analysis equipment.
The rover's encounter with the strange rock formation occurred just days after it was captured driving across the Red Planet for the first time from orbit.
An image taken by the Mars Reconnaissance Orbiter showed Curiosity as a dark speck at the front of a trail of rover tracks about 320m long.
Making tracks: From its vantage point in space, the Mars Reconnaissance Orbiter again captured the @MarsCuriosity rover, this time in mid-drive. The combination of eyes in the sky and wheels on the ground has helped us reveal the planet in new ways. https://t.co/Mz486G2FAV pic.twitter.com/N3QUK2g8PH
— NASA Mars (@NASAMars) April 24, 2025
Since its landing at the Martian Gale Crater in August 2012, Curiosity has uncovered many details about the Red Planet's ancient habitability, helping find if it ever had the conditions to support microbial life.
Its mobile science lab analyses rocks, soil and the Martian atmosphere, looking for chemical signatures of life.
It has made several landmark discoveries, including evidence of ancient riverbeds, organic molecules, and past habitable environments.
The rover has also helped determine the current Martian climate and radiation levels which could help future astronauts prepare for exploration.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


CNN
an hour ago
- CNN
A hunt for ghostly particles found strange signals coming from Antarctic ice. Scientists are still trying to explain them
Scientists are trying to solve a decade-long mystery by determining the identity of anomalous signals detected from below ice in Antarctica. The strange radio waves emerged during a search for another unusual phenomenon: high-energy cosmic particles known as neutrinos. Arriving at Earth from the far reaches of the cosmos, neutrinos are often called 'ghostly' because they are extremely volatile, or vaporous, and can go through any kind of matter without changing. Over the past decade, researchers have conducted multiple experiments using vast expanses of water and ice that are designed to search for neutrinos, which could shed light on mysterious cosmic rays, the most highly energetic particles in the universe. One of these projects was NASA's Antarctic Impulsive Transient Antenna, or ANITA, experiment, which flew balloons carrying instruments above Antarctica between 2006 and 2016. It was during this hunt that ANITA picked up anomalous radio waves that didn't seem to be neutrinos. The signals came from below the horizon, suggesting they had passed through thousands of miles of rock before reaching the detector. But the radio waves should have been absorbed by the rock. The ANITA team believed these anomalous signals could not be explained by the current understanding of particle physics. Follow-up observations and analyses with other instruments, including one recently conducted by the Pierre Auger Observatory in Argentina, have not been able to find the same signals. The results of the Pierre Auger Collaboration were published in the journal Physical Review Letters in March. The origin of the anomalous signals remains unclear, said study coauthor Stephanie Wissel, associate professor of physics, astronomy and astrophysics at the Pennsylvania State University. 'Our new study indicates that such (signals) have not been seen by an experiment … like the Pierre Auger Observatory,' Wissel said. 'So, it does not indicate that there is new physics, but rather more information to add to the story.' Larger, more sensitive detectors may be able to solve the mystery, or ultimately prove whether the anomalous signals were a fluke, while continuing the search for enigmatic neutrinos and their sources, scientists say. Detecting neutrinos on Earth allows researchers to trace them back to their sources, which scientists believe are primarily cosmic rays that strike our planet's atmosphere. The most highly energetic particles in the universe, cosmic rays are made up mostly of protons or atomic nuclei, and they are unleashed across the universe because whatever produces them is such a powerful particle accelerator that it dwarfs the capabilities of the Large Hadron Collider. Neutrinos could help astronomers better understand cosmic rays and what launches them across the cosmos. But neutrinos are difficult to find because they have almost no mass and can pass through the most extreme environments, like stars and entire galaxies, unchanged. They do, however, interact with water and ice. ANITA was designed to search for the highest energy neutrinos in the universe, at higher energies than have yet been detected, said Justin Vandenbroucke, an associate professor of physics at the University of Wisconsin, Madison. The experiment's radio antennae search for a short pulse of radio waves produced when a neutrino collides with an atom in the Antarctic ice, leading to a shower of lower-energy particles, he said. During its flights, ANITA found high-energy fountains of particles coming from the ice, a kind of upside-down shower of cosmic rays. The detector is also sensitive to ultrahigh energy cosmic rays that rain down on Earth and create a radio burst that acts like a flashlight beam of radio waves. When ANITA watches a cosmic ray, the flashlight beam is really a burst of radio waves one-billionth of a second long that can be mapped like a wave to show how it reflects off the ice. Twice in their data from ANITA flights, the experiment's original team spotted signals coming up through the ice at a much sharper angle than ever predicted by any models, making it impossible to trace the signals to their original sources. 'The radio waves that we detected nearly a decade ago were at really steep angles, like 30 degrees below the surface of the ice,' Wissel said. Neutrinos can travel through a lot of matter, but not all the way through the Earth, Vandenbroucke said. 'They are expected to arrive from slightly below the horizon, where there is not much Earth for them to be absorbed,' he wrote in an email. 'The ANITA anomalous events are intriguing because they appear to come from well below the horizon, so the neutrinos would have to travel through much of the Earth. This is not possible according to the Standard Model of particle physics.' The Pierre Auger Collaboration, which includes hundreds of scientists around the world, analyzed more than a decade's worth of data to try to understand the anomalous signals detected by ANITA. The team also used their observatory to try to find the same signals. The Auger Observatory is a hybrid detector that uses two methods to find and study cosmic rays. One method relies on finding high-energy particles as they interact with water in tanks on Earth's surface, and the other tracks potential interactions with ultraviolet light high in our planet's atmosphere. 'The Auger Observatory uses a very different technique to observe ultrahigh energy cosmic ray air showers, using the secondary glow of charged particles as they traverse the atmosphere to determine the direction of the cosmic ray that initiated it,' said Peter Gorham, a professor of physics at the University of Hawaii at Mānoa. 'By using computer simulations of what such a shower of particles would look like if it had behaved like the ANITA anomalous events, they are able to generate a kind of template for similar events and then search their data to see if anything like that appears.' Gorham, who was not involved with the new research, designed the ANITA experiment and has conducted other research to understand more about the anomalous signals. While the Auger Observatory was designed to measure downward-going particle showers produced in the atmosphere by ultrahigh-energy cosmic rays, the team redesigned their data analysis to search for upward-going air showers, Vandenbroucke said. Vandenbroucke did not work on the new study, but he peer-reviewed it prior to publication. 'Auger has an enormous collecting area for such events, larger than ANITA,' he said. 'If the ANITA anomalous events are produced by any particle traveling through the Earth and then producing upward-going showers, then Auger should have detected many of them, and it did not.' A separate follow-up study using the IceCube Experiment, which has sensors embedded deep in the Antarctic ice, also searched for the anomalous signals. 'Because IceCube is very sensitive, if the ANITA anomalous events were neutrinos then we would have detected them,' wrote Vandenbroucke, who served as colead of the IceCube Neutrino Sources working group between 2019 and 2022. 'It's an interesting problem because we still don't actually have an explanation for what those anomalies are, but what we do know is that they're most likely not representing neutrinos,' Wissel said. Oddly enough, a different kind of neutrino, called a tau neutrino, is one hypothesis that some scientists have put forth as the cause of the anomalous signals. Tau neutrinos can regenerate. When they decay at high energies, they produce another tau neutrino, as well as a particle called a tau lepton — similar to an electron, but much heavier. But what makes the tau neutrino scenario very unlikely is the steepness of the angle connected to the signal, Wissel said. 'You expect all these tau neutrinos to be very, very close to the horizon, like maybe one to five degrees below the horizon,' Wissel said. 'These are 30 degrees below the horizon. There's just too much material. They really would actually lose quite a bit of energy and not be detectable.' At the end of the day, Gorham and the other scientists have no idea what the origin of the anomalous ANITA events are. So far, no interpretations match up with the signals, which is what keeps drawing scientists back to try to solve the mystery. The answer may be in sight, however. Wissel is also working on a new detector, the Payload for Ultra-High Energy Observations or PUEO, that will fly over Antarctica for a month beginning in December. Larger and 10 times more sensitive than ANITA, PUEO could reveal more information on what is causing the anomalous signals detected by ANITA, Wissel said. 'Right now, it's one of these long-standing mysteries,' Wissel said. 'I'm excited that when we fly PUEO, we'll have better sensitivity. In principle, we should be able to better understand these anomalies which will go a long way to understanding our backgrounds and ultimately detecting neutrinos in the future.' Gorham said that PUEO, an acronym that references the Hawaiian owl, should have the sensitivity to capture many anomalous signals and help scientists find an answer. 'Sometimes you just have to go back to the drawing board and really figure out what these things are,' Wissel said. 'The most likely scenario is that it's some mundane physics that can be explained, but we're sort of knocking on all the doors to try to figure out what those are.'


CNN
an hour ago
- CNN
A hunt for ghostly particles found strange signals coming from Antarctic ice. Scientists are still trying to explain them
Scientists are trying to solve a decade-long mystery by determining the identity of anomalous signals detected from below ice in Antarctica. The strange radio waves emerged during a search for another unusual phenomenon: high-energy cosmic particles known as neutrinos. Arriving at Earth from the far reaches of the cosmos, neutrinos are often called 'ghostly' because they are extremely volatile, or vaporous, and can go through any kind of matter without changing. Over the past decade, researchers have conducted multiple experiments using vast expanses of water and ice that are designed to search for neutrinos, which could shed light on mysterious cosmic rays, the most highly energetic particles in the universe. One of these projects was NASA's Antarctic Impulsive Transient Antenna, or ANITA, experiment, which flew balloons carrying instruments above Antarctica between 2006 and 2016. It was during this hunt that ANITA picked up anomalous radio waves that didn't seem to be neutrinos. The signals came from below the horizon, suggesting they had passed through thousands of miles of rock before reaching the detector. But the radio waves should have been absorbed by the rock. The ANITA team believed these anomalous signals could not be explained by the current understanding of particle physics. Follow-up observations and analyses with other instruments, including one recently conducted by the Pierre Auger Observatory in Argentina, have not been able to find the same signals. The results of the Pierre Auger Collaboration were published in the journal Physical Review Letters in March. The origin of the anomalous signals remains unclear, said study coauthor Stephanie Wissel, associate professor of physics, astronomy and astrophysics at the Pennsylvania State University. 'Our new study indicates that such (signals) have not been seen by an experiment … like the Pierre Auger Observatory,' Wissel said. 'So, it does not indicate that there is new physics, but rather more information to add to the story.' Larger, more sensitive detectors may be able to solve the mystery, or ultimately prove whether the anomalous signals were a fluke, while continuing the search for enigmatic neutrinos and their sources, scientists say. Detecting neutrinos on Earth allows researchers to trace them back to their sources, which scientists believe are primarily cosmic rays that strike our planet's atmosphere. The most highly energetic particles in the universe, cosmic rays are made up mostly of protons or atomic nuclei, and they are unleashed across the universe because whatever produces them is such a powerful particle accelerator that it dwarfs the capabilities of the Large Hadron Collider. Neutrinos could help astronomers better understand cosmic rays and what launches them across the cosmos. But neutrinos are difficult to find because they have almost no mass and can pass through the most extreme environments, like stars and entire galaxies, unchanged. They do, however, interact with water and ice. ANITA was designed to search for the highest energy neutrinos in the universe, at higher energies than have yet been detected, said Justin Vandenbroucke, an associate professor of physics at the University of Wisconsin, Madison. The experiment's radio antennae search for a short pulse of radio waves produced when a neutrino collides with an atom in the Antarctic ice, leading to a shower of lower-energy particles, he said. During its flights, ANITA found high-energy fountains of particles coming from the ice, a kind of upside-down shower of cosmic rays. The detector is also sensitive to ultrahigh energy cosmic rays that rain down on Earth and create a radio burst that acts like a flashlight beam of radio waves. When ANITA watches a cosmic ray, the flashlight beam is really a burst of radio waves one-billionth of a second long that can be mapped like a wave to show how it reflects off the ice. Twice in their data from ANITA flights, the experiment's original team spotted signals coming up through the ice at a much sharper angle than ever predicted by any models, making it impossible to trace the signals to their original sources. 'The radio waves that we detected nearly a decade ago were at really steep angles, like 30 degrees below the surface of the ice,' Wissel said. Neutrinos can travel through a lot of matter, but not all the way through the Earth, Vandenbroucke said. 'They are expected to arrive from slightly below the horizon, where there is not much Earth for them to be absorbed,' he wrote in an email. 'The ANITA anomalous events are intriguing because they appear to come from well below the horizon, so the neutrinos would have to travel through much of the Earth. This is not possible according to the Standard Model of particle physics.' The Pierre Auger Collaboration, which includes hundreds of scientists around the world, analyzed more than a decade's worth of data to try to understand the anomalous signals detected by ANITA. The team also used their observatory to try to find the same signals. The Auger Observatory is a hybrid detector that uses two methods to find and study cosmic rays. One method relies on finding high-energy particles as they interact with water in tanks on Earth's surface, and the other tracks potential interactions with ultraviolet light high in our planet's atmosphere. 'The Auger Observatory uses a very different technique to observe ultrahigh energy cosmic ray air showers, using the secondary glow of charged particles as they traverse the atmosphere to determine the direction of the cosmic ray that initiated it,' said Peter Gorham, a professor of physics at the University of Hawaii at Mānoa. 'By using computer simulations of what such a shower of particles would look like if it had behaved like the ANITA anomalous events, they are able to generate a kind of template for similar events and then search their data to see if anything like that appears.' Gorham, who was not involved with the new research, designed the ANITA experiment and has conducted other research to understand more about the anomalous signals. While the Auger Observatory was designed to measure downward-going particle showers produced in the atmosphere by ultrahigh-energy cosmic rays, the team redesigned their data analysis to search for upward-going air showers, Vandenbroucke said. Vandenbroucke did not work on the new study, but he peer-reviewed it prior to publication. 'Auger has an enormous collecting area for such events, larger than ANITA,' he said. 'If the ANITA anomalous events are produced by any particle traveling through the Earth and then producing upward-going showers, then Auger should have detected many of them, and it did not.' A separate follow-up study using the IceCube Experiment, which has sensors embedded deep in the Antarctic ice, also searched for the anomalous signals. 'Because IceCube is very sensitive, if the ANITA anomalous events were neutrinos then we would have detected them,' wrote Vandenbroucke, who served as colead of the IceCube Neutrino Sources working group between 2019 and 2022. 'It's an interesting problem because we still don't actually have an explanation for what those anomalies are, but what we do know is that they're most likely not representing neutrinos,' Wissel said. Oddly enough, a different kind of neutrino, called a tau neutrino, is one hypothesis that some scientists have put forth as the cause of the anomalous signals. Tau neutrinos can regenerate. When they decay at high energies, they produce another tau neutrino, as well as a particle called a tau lepton — similar to an electron, but much heavier. But what makes the tau neutrino scenario very unlikely is the steepness of the angle connected to the signal, Wissel said. 'You expect all these tau neutrinos to be very, very close to the horizon, like maybe one to five degrees below the horizon,' Wissel said. 'These are 30 degrees below the horizon. There's just too much material. They really would actually lose quite a bit of energy and not be detectable.' At the end of the day, Gorham and the other scientists have no idea what the origin of the anomalous ANITA events are. So far, no interpretations match up with the signals, which is what keeps drawing scientists back to try to solve the mystery. The answer may be in sight, however. Wissel is also working on a new detector, the Payload for Ultra-High Energy Observations or PUEO, that will fly over Antarctica for a month beginning in December. Larger and 10 times more sensitive than ANITA, PUEO could reveal more information on what is causing the anomalous signals detected by ANITA, Wissel said. 'Right now, it's one of these long-standing mysteries,' Wissel said. 'I'm excited that when we fly PUEO, we'll have better sensitivity. In principle, we should be able to better understand these anomalies which will go a long way to understanding our backgrounds and ultimately detecting neutrinos in the future.' Gorham said that PUEO, an acronym that references the Hawaiian owl, should have the sensitivity to capture many anomalous signals and help scientists find an answer. 'Sometimes you just have to go back to the drawing board and really figure out what these things are,' Wissel said. 'The most likely scenario is that it's some mundane physics that can be explained, but we're sort of knocking on all the doors to try to figure out what those are.'


Gizmodo
3 hours ago
- Gizmodo
NASA Aircraft Set to Perform Wild Low-Altitude Stunts Around These U.S. Cities
NASA is getting ready to fly two planes over mid-Atlantic states and parts of California, where they will be carrying out special maneuvers at a close distance while collecting valuable data about our changing planet. The two research aircraft, named P-3 Orion (N426NA) and a King Air B200 (N46L), are set to fly over Baltimore, Philadelphia, the Virginia cities of Hampton, Hopewell, and Richmond, in addition to the Los Angeles Basin, Salton Sea, and Central Valley, according to NASA. The flights will take place along the eastern coast between Sunday, June 22 and Thursday, June 26, and in California between Sunday, June 29 to Wednesday, July 2. It'll be a good opportunity to catch the two planes as they will fly at lower altitudes than most commercial flights, while pulling off specialized maneuvers like vertical spirals between 1,000 and 10,000 feet (304 to 3,048 meters), circling above power plants, landfills, and urban areas. The planes will also make missed approaches at local airports and low-altitude flybys along runways to collect air samples near the surface. The P-3, operated out of NASA's Wallops Flight Facility in Virginia, is a four-engine turboprop aircraft, carrying six science instruments. The King Air B200 is a twin-engine aircraft owned by Dynamic Aviation and contracted by NASA. The aircraft will carry out 40 hours of data collection for NASA's Student Airborne Research Program (SARP) on each U.S. coast. SARP is an eight-week summer internship program at NASA that provides undergraduate students with hands-on experience in various scientific areas. The low-altitude flights will be used to gather atmospheric data through the on board science instruments, which will be operated by the students. 'Despite SARP being a learning experience for both the students and mentors alike, our P-3 is being flown and performing maneuvers in some of most complex and restricted airspace in the country,' Brian Bernth, chief of flight operations at NASA Wallops, said in a statement. 'Tight coordination and crew resource management is needed to ensure that these flights are executed with precision but also safely.' NASA uses low altitude flights for Earth science, gathering high-resolution data that satellites can't capture at the same level of detail. These flights have typically supported research on climate change, natural disasters, and atmospheric science. The upcoming flights will take place near populated areas, so there will be plenty of chances to see the aircraft flying overhead.