How to see Mars visit a bright star and the moon this June
When you buy through links on our articles, Future and its syndication partners may earn a commission.
This has been a most interesting year to follow Mars. If you've been monitoring the Red Planet since the start of 2025, you have no doubt noted the dramatic change in its brightness as well as the occasional interactions it has had with the moon, bright stars and other celestial objects.
Mars travels a little more than half of its orbit each Earth year, and thus has oppositions (that point in the sky where it appears directly opposite to the sun in the sky) every two years plus about 50 days (its "synodic period," which is also the longest for any known planet). Prior to 2025, the last opposition of Mars was on Dec. 8, 2022; after 2025, the next will come on Feb. 19, 2027. It reached opposition this year on Jan. 16 and two nights earlier, on Jan. 14, a nearly full moon passed directly in front of Mars as seen from much of North America.
Mars is the most Earth-like planet of all known beyond our own, and it passed closest to Earth during the American morning of Jan. 12, just 3.5 days before opposition.
But the 2025 apparition of Mars has been one of the poorer and more distant ones in the planet's 15-to-17-year cycle of oppositions near and far. Just three months after opposition, Mars arrived at aphelion (farthest from the sun) in its eccentric orbit, so we came no closer than 59.7 million miles (96.1 million kilometers) to it last winter — some 5.3 light minutes away. Shining with a yellow-orange hue, it attained its peak brightness, gleaming at magnitude -1.3. That's just a trifle fainter than Sirius, the brightest star in the sky.
Ever since Jan. 12, however, it has been receding from Earth, and consequently it has gradually been getting dimmer. So, we're leaving it behind, and ever since Feb. 24, Mars has been traveling in prograde (eastward) motion — a long, straight line around the sky, becoming steadily farther away and smaller. Still, in spite of its fade-down, it continued to put on an eye-catching show during February and March with the "twin stars" of Gemini, Pollux and Castor as the brightest member of a prominent, albeit temporary, triangle.
And then, on the evening of May 4, Mars made a very close pass near the Beehive Star Cluster (M44), a very pretty sight as viewed through binoculars or a low-power, wide-field telescope.
And during the latter part of June, Mars will again make for a couple of eye-catching shows, teaming up first with a bright star and then, late this month, with Earth's nearest neighbor in space.
TOP TELESCOPE PICK:
Want to see Alcor and the other stars of the Big Dipper? The Celestron NexStar 4SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look at our Celestron NexStar 4SE review.
Mars now appears as nothing more than a featureless dot in most telescopes. But on Tuesday evening (June 17), it forms a wonderful naked-eye pairing with the thin, only slightly brighter star Regulus in the constellation of Leo the Lion. Observers in the Americas will see the planet and star 2 degrees apart or less from June 13 through June 20, and one degree or less apart June 15 through June 18.
For viewers, around 40 degrees north latitude, Regulus and Mars are side by side, only 1.5 degrees apart on June 14, and Mars is 45 arc minutes (three quarters of one degree) almost straight above Regulus on June 17. That will be the evening when they are closest together. Neither one is exceptionally bright; Regulus shines at magnitude +1.34 and Mars is at magnitude +1.41. But the fact that they will appear so near to each other and are so closely matched in brightness will make them appear to stand out in the early evening sky.
Look for them around 10 p.m. local daylight time, roughly one-quarter up in the western sky. In addition to their closeness to each other, look for the orange-gold of Mars and blue-white of Regulus to appear intensified by contrast to each other when they are so close together (as seen with the naked eye or binoculars).
On Sunday evening, June 29, a waxing crescent moon, 24% illuminated by the sun, will pass very close to Mars and make for a rather attractive sight, low in the western sky at dusk. The moon, moving around Earth in an easterly direction at roughly its own diameter each hour, will appear to pass just below the orange-gold planet. Even though North America will miss out on seeing the moon pass directly in front of Mars (called an "occultation"), Mars will attract attention as it slowly appears to glide above the moon.
The view of the moon occulting Mars will be restricted to parts of Ecuador and Peru.
After closest approach, the moon will move slowly away from Mars. Locations to the east (or to the right) of a line running roughly from central Texas through central Ontario will be in various stages of twilight at the moment that the moon and planet are closest together (called a "conjunction").
To the west (or to the right) of that line, the sun will be above the horizon when the two are in conjunction, but will still appear relatively close as darkness falls. For places where the two are closest together within an hour or less after sunset, you'll probably initially need binoculars to pick Mars out against the bright twilight sky.
Once the sky has sufficiently darkened, however, Mars will be relatively easy to see. For most locations, the upper limb of the moon will skim to within about 20 arc minutes (one-third of a degree) of Mars. For places across the northern U.S. and Canada, the gap between the two will be a bit larger, while across the southern U.S. and the Caribbean, the gap will be a bit smaller.
The table below (calculated exclusively for Space.com by Joe Rao) provides the specific details for 15 selected cities in the U.S. and Canada.
The table gives civil times (all p.m.) of Mars' closest approach to the edge of the moon's upper limb. Separation between Mars and the moon's upper edge is given in terms of minutes of arc (the apparent width of the moon on June 29 is 31 arc minutes), and the percentage of the apparent width of the moon. A value of 0.48, for example, is equal to 48% of the moon's width (or fractionally, slightly less than one-half).
Examples: from Miami, closest approach between Mars and the moon is at 10:13 p.m. EDT. Separation is 15 arc minutes or 0.48, which is just under one-half of a moon's width from Mars to the upper edge of the moon. From New York, closest approach is at 9:48 p.m. EDT, the separation is listed at 23 arc minutes or 0.74, which means that 74% of the moon's width will separate Mars from the moon's upper edge.
Related Stories:
— How to see the 'Horse and Rider' in the Big Dipper's handle this summer
— Mars: Everything you need to know about the Red Planet
— June's Strawberry Moon treats skywatchers to a rare low-riding show (photos)
After its rendezvous with the moon, Mars will continue to press on to the east. In the weeks and months that follow, Mars will continue to be a fixture in the evening sky, but will continue to recede from Earth and consequently will get fainter, diminishing to the rank of second magnitude.
Passing north of Spica on Sept. 13 and Mercury on Oct. 19, Mars will be getting progressively lower in the sky — more southerly and nearer to the sunset. When it finally fades into the evening twilight glow of early November, it will be on the far side of the sun, some 225 million miles (362 million km) from Earth and just 1/13 as bright as it was in mid-January. It will finally end its run as an evening object when it will be at conjunction with the sun next year, on Jan. 9.
Joe Rao serves as an instructor and guest lecturer at New York's Hayden Planetarium. He writes about astronomy for Natural History magazine, Sky and Telescope and other publications.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
5 hours ago
- Yahoo
NASA's New Data Has Scientists Sounding the Alarm on Climate Extremes
The latest satellite data from NASA is painting a troubling picture of Earth's climate, and it's coming into focus faster than expected. According to new research from NASA's Goddard Space Flight Center, extreme weather events like floods and droughts are not only becoming more common, but also more intense, longer-lasting, and more destructive. The Guardian reported that data from the past five years show these events doubling in intensity compared to averages between 2003 and 2020. Even researchers behind the study admit they didn't anticipate such a dramatic spike. "We were surprised to find the actual population living in rural areas is much higher than the global data indicates," said lead researcher Dr. Bailing Li, who helped compile the figures using NASA's Grace satellite and dam relocation data across 35 countries. The result: a grim confirmation that climate change is fueling a shift in the planet's water systems, and the consequences are just data, which has not yet been peer-reviewed, reveals that global extremes now show a stronger correlation with rising temperatures than with other climate drivers like El Niño. Events are lasting longer, affecting wider areas, and shifting with less predictability—creating what scientists call "hydroclimatic whiplash," sudden transitions from drought to flood or vice versa. What's most worrying isn't just the scale of the change, but how unprepared most of the world remains. Experts say the current infrastructure, especially in water management, was built for a different era—one with a more stable climate. Christopher Gasson of Global Water Intelligence warned that most water systems are facing extremes from both ends—too much water or too little—and that investment must scale quickly to keep up. Meteorologists and climate experts across the globe echoed the concern. Richard Betts of the UK's Met Office called the data "a stark reminder" that what was once theoretical is now reality. He stressed that most societies have built their systems around past weather patterns, leaving them vulnerable to extremes that now fall outside the historical norm. With the World Meteorological Organization predicting an 80% chance that one of the next five years will be Earth's hottest ever, the window for adapting is narrowing. NASA's findings serve as a warning: the planet is heating up, and the consequences are already surging across every New Data Has Scientists Sounding the Alarm on Climate Extremes first appeared on Men's Journal on Jun 22, 2025


Washington Post
7 hours ago
- Washington Post
New marine life database touted as tool for ocean research
Biologists have launched a database of marine animals' body sizes that they say could help preserve biodiversity in Earth's oceans. Why bother measuring animals' body size? In an article in Global Ecology and Biogeography, researchers write that body size affects animals in a multitude of ways, from their behavior and favorite foods to their physiology and habitat choices.


Boston Globe
19 hours ago
- Boston Globe
It turns out weather on other planets is a lot like on Earth
Related : Advertisement But by leveraging the sheer amount of knowledge and data about our planet, scientists can get a head start on understanding the inner workings of storms or vortexes on other planetary bodies. In some cases, the models provide almost everything we know about some otherworldly atmospheric processes. 'Our planetary atmosphere models are derived almost exclusively from these Earth models,' said Scot Rafkin, a planetary meteorologist at the Southwest Research Institute. 'Studying the weather on other planets helps us with Earth and vice versa.' Satellite photo of the Baltic Sea surrounding Gotland, Sweden, with algae bloom swirling in the water. The churning clouds near Jupiter's pole appear like ocean currents on Earth — as if you're looking at small edges and meandering fronts in the Baltic Sea. European Space Agency Vortexes on Jupiter If you looked at the churning clouds near Jupiter's pole, they appear like ocean currents on Earth - as if you're looking at small edges and meandering fronts in the Baltic Sea. 'This looks so much like turbulence I'm seeing in our own ocean. They must be covered by at least some similar dynamics,' Lia Siegelman, a physical oceanographer at Scripps Institution of Oceanography, recalled the first time she saw images of vortexes from NASA's Juno mission, which entered Jupiter's orbit in 2016. Advertisement Working with planetary scientists, she applied her understanding of the ocean physics on Earth to the gas giant in computer models. Whether it's in air or water on any planet, she found the laws of physics that govern turbulent fluids is the same (even though the vortex on Jupiter is about 10 times larger than one on Earth). When cyclones and anticyclones (which spin in the opposite direction) interact in the ocean, they create a boundary of different water masses and characteristics - known as a front. She and her colleagues found the same phenomenon occurs in cyclones at Jupiter's poles, showing similar swirls. 'By studying convection on Earth, we were also able to spot that phenomenon occurring on Jupiter,' Siegelman said, even though Jupiter has relatively little data compared to Earth. Related : She and her colleagues also found a pattern never seen on Earth before: a cluster of cyclones in a symmetrical, repeating pattern near the poles of Jupiter. These 'polar vortex crystals' were observed in 2016 and have remained in place since. Despite never seeing them on Earth, she and other planetary scientists collaborated to reproduce these swirls in computer models - relying on 'just very simple physics.' 'Planetary scientists use a lot of the weather models that have been developed to study either the ocean or the atmosphere,' Siegelman said. 'By just knowing so much about the ocean and the atmosphere, we can just guide our analysis.' Advertisement This NASA handout photo shows beds of sandstone inclined to the southwest toward Mount Sharp and away from the Gale Crater rim on Mars. HANDOUT Dust storms on Mars If you plan to move to Mars, be prepared to face the dust storms. At their most intense, they can engulf the entire planet and last from days to months. The dirt can block sunlight and coat infrastructure. While scientists have observed many of these storms, they still don't know how to predict them. Dust storms operate similarly on Earth and Mars. Dust is lifted and heated, and rises like a hot-air balloon, Rafkin said. The rising air will suck in air from below to replace it. Air pressure drops near the surface, sucking in more wind that lifts the dust. As Mars spins, the angular momentum causes the dust storm to rotate. In reality, Martian dust storms are more similar to hurricanes on Earth in terms of their scale and circulation, said planetary scientist Claire Newman. She said the sources are different (Mars is a dust planet, whereas Earth is a water planet), but they have a similar effect on temperature and winds. But it's still unknown how these Martian dust storms form. On Earth, a winter storm with a cold front can lift the dust; scientists sometimes see similar dust lifting along cold fronts on Mars, but many storms just seem to pop up. Related : To predict a dust storm, scientists need to understand the circulation patterns on Mars - forecasting the cold front that can lift the dust, for instance. But it's something researchers don't yet understand. Wind measurements are scarce on Mars, aside from a few scattered measurement sites on its surface. With adjustments, Earth-based models can simulate the conditions that can lead to the uplifting winds and dust storms. 'Almost everything that we know about the circulation patterns on Mars come from models,' said Rafkin, adding that scientists 'have effectively no observations of the movement of the air on Mars.' Advertisement In this photo, sand blowing off fields creates a dust storm near Morton, Texas, in May 2021. Dust storms operate similarly on Earth and Mars. Jude Smith/Associated Press The models currently serve as the best way to understand dust storms on the Red Planet, unless more dedicated studies and stations are added, similar to Earth. 'We're basically applying these models to try and get a sense of what the environment is,' said Newman, 'before we send robots or potentially people there.' Rain on Titan The second-largest moon in our solar system, Titan is the only other known world besides Earth that has standing bodies of rivers, lakes and seas on its surface - consisting of liquid methane instead of water. That's partly why some scientists think it could be a future home for Earthlings, if we can just figure out the 750-million-mile journey and learn how to survive the minus-179 degree Celsius surface temperatures. But how did those lakes and oceans fill up? Even though it rains methane, the precipitation on Titan is very similar to that on Earth, Rafkin said. On Earth, take a chunk of air with water vapor, cool it off and the air becomes saturated to form a cloud. Those small cloud droplets can bump into one another or take in more water vapor to grow bigger. But eventually, the water vapor starts to condense into a liquid and brings rain. We've seen this process take place on Earth both naturally in the atmosphere and in labs enough times to understand the physics. But limited observations on Titan - effectively only visiting its atmosphere a handful of times - have caused scientists to turn to models. Using the same underlying physics, scientists can model the cloud-making process on this foreign body. And, the modeled clouds look a lot like the few they have observed in real life on Titan. Advertisement This November 2015 composite image made available by NASA shows an infrared view of Saturn's moon, Titan, as seen by the Cassini spacecraft. Titan is the only other known world besides Earth that has standing bodies of rivers, lakes and seas on its surface. AP 'If we try to model them and we get clouds, but they look totally bizarre and different than what we're observing, then that's an indication that maybe we're not representing the cloud processes correctly,' Rafkin said. 'But as it turns out, for the most part, when we model these things, we can produce clouds that look reasonably close to what we've observed.' Because of its incredibly dense atmosphere, Titan has storm clouds - two to four times taller than those on Earth - that are able to produce feet of methane rain. While scientists haven't observed such huge volumes, they have modeled the deluges based on the surface darkening as a storm passed - similar to how rain on soil or pavement darkens the surface on Earth. It's still a mystery where the methane comes from. But at least we know to bring a very, very sturdy raincoat if we ever visit Titan.