logo
‘Biggest Booms Since The Big Bang' Found As Black Holes Shred Stars

‘Biggest Booms Since The Big Bang' Found As Black Holes Shred Stars

Forbes05-06-2025

Caption: Artist's concept of the formation of Extreme Nuclear Transients (ENTs).
Astronomers have captured the most energetic explosions ever recorded in the universe since the big bang as massive stars get ripped apart by supermassive black holes.
These Extreme Nuclear Transients, as they've been named, are a new class of rare and powerful cosmic explosions so bright they appear to release more energy than 100 supernovae (exploding stars).
Black holes are such strong gravity that nothing can escape from them, not even photons of light. Supermassive black holes are the most massive type and reside at the centers of galaxies. While some of these black holes continuously consume gas and dust and glow for millions of years, others lie dormant — only revealing themselves when an unlucky star drifts too close. ENTs may be a glimpse into these otherwise unseen objects.
'We've observed stars getting ripped apart as tidal disruption events for over a decade, but these ENTs are different beasts, reaching brightnesses nearly ten times more than what we typically see,' said Jason Hinkle, a doctoral graduate of the University of Hawaii's Institute for Astronomy, who led the study published this week in Science Advances. These powerful events don't just flare and fade quickly. It can take over 100 days for an ENT to reach peak brightness and more than 150 days to dim to half its maximum.
A tidal disruption event is when a star gets 'spaghettified' by a supermassive black hole, causing a brilliant flare, but an ENT is even more powerful. 'Not only are ENTs far brighter than normal tidal disruption events, but they remain luminous for years, far surpassing the energy output of even the brightest known supernova explosions," said Hinkle. These flares occur in the centers of galaxies and radiate more energy than any previously known event.
At least 10 million times less frequent than supernovae, ENTs occur when massive stars — at least three times more massive than our sun — come too close to a supermassive black hole. A tidal disruption follows, tearing the stars apart and releasing more energy than 100 supernovae. What's different about them is their speed — ENTs allow astronomers to watch as a massive star is 'digested' over time by a supermassive black hole.
'These ENTs don't just mark the dramatic end of a massive star's life,' said Hinkle. 'They illuminate the processes responsible for growing the largest black holes in the universe.'
Artist's concept of the formation of Extreme Nuclear Transients (ENTs).
The research included data on the most energetic event yet recorded, an ENT named Gaia18cdj. A typical supernova emits about as much energy as the sun ever will over 10 billion years. Gaia18cdj emitted 25 times more energy than the most powerful supernova ever observed.
The discovery came from scientists analyzing data from the European Space Agency's Gaia mission, which made three trillion observations of two billion stars while orbiting the sun between 2014 and 2025 when it ran out of fuel. It recorded unexplained flares in 2016 and 2018, with scientists discovering another — called ZTF20abrbeie and nicknamed 'Barbie' — in 2020, using data from the Zwicky Transient Facility survey telescope in California.
Follow-ups were then made using data from other telescopes, including the Keck Observatory in Hawaii and NASA's Neil Gehrels Swift Observatory and WISE spacecraft.
Artist's concept of the formation of Extreme Nuclear Transients (ENTs).
Although all astronomy is looking back in time (even the sun's light is eight minutes old), the brightness of ENTs allows them to be seen over vast distances. That opens up the possibility of seeing them in a time called the 'cosmic noon,' when the universe was half its current age. This was "when galaxies were happening places — forming stars and feeding their supermassive black holes 10 times more vigorously than they do today,' said Benjamin Shappee, Associate Professor at IfA and co-author of the study. 'ENTs provide a valuable new tool for studying massive black holes in distant galaxies.'
NASA's Nancy Grace Roman Space Telescope, launching as early as 2026, will use its infrared vision to catch these rare flashes from over 12 billion years ago — when the universe was just 10% of its current age — and help astronomers trace how black holes shaped galaxies over cosmic time.
Wishing you clear skies and wide eyes.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Earth's Magnetic Field Might Weirdly Be Controlling the Air We Breathe, Scientists Say
Earth's Magnetic Field Might Weirdly Be Controlling the Air We Breathe, Scientists Say

Yahoo

time16 hours ago

  • Yahoo

Earth's Magnetic Field Might Weirdly Be Controlling the Air We Breathe, Scientists Say

"Hearst Magazines and Yahoo may earn commission or revenue on some items through these links." Here's what you'll learn when you read this story: Earth's oxygenated atmosphere and magnetic field make life possible, but scientists have discovered that there's a hidden link between the two that's stronger than we originally imagined. Comparing 540 million years of data from charcoal deposits and magnetic crystals formed from ancient volcanic eruptions, scientists found that the processes creating both increase at the same rate over time, and even experience the same jump in activity levels around 330 million years ago. Scientists aren't yet certain which mechanism is impacting the other—or if there is a third mechanism impacting them both. If you list all of the things that had to go right to make life on Earth possible, our minuscule existence (cosmically speaking) seems all the more amazing. Our Sun is a G-type star with moderate radiation output that doesn't tidally lock our planet. The Earth is situated in our Sun's habitable zone. The planet has maintained a robust atmosphere for hundreds of millions of years, and the dynamo at the planet's heart generates a magnetic field that protects us from the most harmful effects of space radiation. Earth truly is a paradise for life. Although scientists have known about these life-giving aspects of Earth for centuries, they're still discovering surprising connections between them. In a new study published last week in the journal Science Advances, scientists from NASA, the University of Washington, and the University of Leeds in the U.K. discovered a surprising connection between two of Earth's most important life-sustaining features—its oxygenated atmosphere and its magnetic field. It's hardly surprising that the existence of one of these features might impact the existence of the other. After all, Mars (which is also in the Sun's habitable zone) used to have an atmosphere, but without a robust magnetic field, the Red Planet eventually lost that atmosphere to the unrelenting lashing of solar winds. However, the authors of this new paper found that, on Earth, the correlation between these two systems runs much deeper than we previously imagined. 'We find that both exhibit strong linearly increasing trends, coupled with a large surge in magnitude between 330 and 220 million years ago,' the authors wrote. 'Our findings suggest unexpected strong connections between the geophysical processes in Earth's deep interior, the surface redox budget, and biogeochemical cycling.' Analyzing data stretching back to the Cambrian some 541 million years ago, the researchers found that the rise in Earth's magnetic field and the rise in its oxygen levels were very closely aligned—slowly increasing overtime, except for one bout of increased activity lasting from 330 million to 220 million years ago. To map this comparison over the course of hundreds of millions of years, the researchers couldn't rely on direct data—there is no such record for atmospheric oxygen levels, for example. However, they could track the strength of wildfires, which show up as charcoal deposits in the geologic record. This would provide a clue, since a stronger, longer-lasting fire means that there was more oxygen in the atmosphere to fuel said fire. To compare this record with Earth's magnetic field history, the team analyzed certain magnetic crystals that formed in ancient volcanoes and—due to their composition—essentially act like a 'compass frozen in time,' according to Nature. Once plotted side-by-side, the team noticed that the two processes largely increased in lockstep with one another, and even experienced the same increase 330 million years ago. Interestingly, this coincides with the formation of Pangea, though scientists aren't sure exactly if the formation of the supercontinent is related to the increase or a coincidence, as the data does stretch back far enough to compare levels to other supercontinents in Earth's history. So, what's going on here? Well, the researchers aren't exactly sure, but they have a few guesses. The most likely one is that Earth's magnetic field directly impacts oxygen levels, as it protects Earth (and oxygen-producing plants) from solar radiation. However, it's also possible that increased oxygenation coupled with plate tectonics—which drive oxygen toward the liquid outer core that produces the magnetic field—could also play a role. The authors also aren't ruling out the idea that a third, currently unknown mechanism could provide an explanation for this steadily upward trend. 'One single mind cannot comprehend the whole system of the Earth,' Ravi Kopparapu, a co-author of the study from NASA, told Live Science. 'We're like kids playing with Legos, with each of us having a separate Lego piece. We're trying to fit all of it together and see what's the big picture.' While 540 million years is an unfathomably long time compared to our human lifespan (or even our species' existence), it's only around 12 percent of Earth's entire existence, so these trends could simply be coincidental. All we can do is continue searching for answers among the clues that we do have, and try to grasp just how wondrous our home planet really is. You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life?

Gaia, Europe's Galactic Cartographer, Is Gone But Not Forgotten
Gaia, Europe's Galactic Cartographer, Is Gone But Not Forgotten

Yahoo

time2 days ago

  • Yahoo

Gaia, Europe's Galactic Cartographer, Is Gone But Not Forgotten

This observatory has probably been the most transformative astronomy project of the 21st century, but there's a good chance you've never heard of it. Just last week, for instance, the Hayden Planetarium at the American Museum of Natural History (AMNH) in New York City debuted a new 'space show' called Encounters in the Milky Way—and this often overlooked spacecraft is its scientific superstar. But you're more likely to know about actor Pedro Pascal's narration in the show than you are to be familiar with the single space mission that serves as the presentation's backbone. The observatory is called Gaia. And, like so many good things, you wouldn't really miss it until it's gone—and now it is. Launched in 2013 by the European Space Agency (ESA), it ceased operations this past March, when it used what little fuel it had left to steer into a graveyard orbit around the sun. From its station in a quiescent region of deep space more than 1.6 million kilometers from Earth, Gaia's mission was, in essence, quite simple: it was designed to give us a better sense of where we are—a celestial 'reference frame' on overlapping interplanetary, interstellar and intergalactic scales. To do that, it used twin sky-sweeping telescopes and three instruments, including a billion-pixel camera, to painstakingly measure the distances, positions, motions, and more of about two billion celestial objects, most of them stars in our own galaxy. It made some three trillion observations in all, producing (among many other things) the largest, most precise three-dimensional map of the Milky Way ever made. [Sign up for Today in Science, a free daily newsletter] 'Gaia was our best galactic cartographer, and I sometimes say that Encounters in the Milky Way is my love letter to it,' says Jackie Faherty, a senior research scientist at the AMNH, who curated the new space show and regularly works with Gaia data. 'It turns out you can learn a lot by determining where and how far off the stars are from you—and especially by how they are moving.... Gaia's creation of this map is something we all should celebrate because it's just as iconic and useful as the maps of Earth we all see in school or pull up on Google. Looking at it, you can find and explore all sorts of different things you want to know.' From Gaia's map, more than 13,000 peer-reviewed studies have already emerged, and many have concerned the fundamental structure and deep history of the Milky Way. Thanks to Gaia, scientists now can better gauge the amount of dark matter within our galaxy and have been able to track the Milky Way's growth and evolution across eons via relic streams of stars strewn from ancient mergers with other, smaller galaxies. 'Stars retain memories of their origins in their ages, motions and chemical compositions—all of which Gaia measured,' says Amina Helmi, an astronomer at the Kapteyn Astronomical Institute in the Netherlands. She and her colleagues used the mission's data to discover evidence of a major galactic merger that, some 10 billion years ago, shaped our home galaxy into the Milky Way we know today. 'With all that information, it was like a veil being lifted,' Helmi says. 'We could suddenly perform what's sometimes called 'galactic archaeology,' reconstructing the Milky Way's history to see when and how this merger happened with another, smaller galaxy that was about a third to a quarter of our galaxy's mass.... Gaia allows us to look billions of years into the Milky Way's history—before our solar system even formed—to see what actually happened back then, which is absolutely amazing.' Tracing perturbations from one more recent and ongoing merger, astronomers have even managed to reveal an apparent warp in the Milky Way's disk, offering a new twist—literally—on the classic image of our cosmic home. At smaller scales, the spacecraft has refined the orbits of more than 150,000 asteroids, surveilling hundreds of them to see if they have their own moons. It has spied hints of thousands of worlds and even a few black holes orbiting other stars. At larger scales, it has helped estimate the expansion rate of the universe, and it has also teased out the subtle tugging of the Milky Way's heart upon the solar system across tens of thousands of light-years. Gaia's sprawling cosmic reckoning is now a cornerstone for most state-of-the-art Earth- and space-based telescopes, which rely on the mission's target-dense celestial map to orient and calibrate their own observations and operations. Whether it's NASA's James Webb Space Telescope, ESA's Euclid mission, the ground-based, U.S.-built Vera C. Rubin Observatory or Europe's under-construction Extremely Large Telescope, practically all of the world's most exciting starlight-gathering telescopes will, in some sense, be guided by Gaia. And stunningly, the best is yet to come. More than two thirds of the mission's treasure trove of data is still under wraps. It is being prepared in a time-consuming process for two major upcoming milestones: about half of Gaia's total data are targeted for release next year, and the mission's full data are set to arrive no earlier than 2030. But because it didn't beam back images ready-made for lush wall posters and desktop backgrounds, Gaia was destined from the start to be 'criminally under-recognized outside astronomy,' says Mark McCaughrean, an astronomer and former senior adviser to ESA. 'And because Gaia provided utterly essential, if mundane, information such as precise stellar distances, it's been doomed with this curse of simultaneous ubiquity and obscurity as many people use its data but take it for granted as just 'coming from a catalog.'' Anthony Brown, an astronomer at Leiden University in the Netherlands, who leads the mission's data processing and analysis group, puts it most succinctly: 'For astronomers, Gaia has become almost like the air you breathe,' he says. At the heart of Gaia's mapmaking is a technique called astrometry, the measurement of celestial positions and motions in the plane of the sky. Paired with a phenomenon called parallax—the apparent shift of an object's position when viewed from two vantage points—astronomers can use Gaia for determining distances, too. You can see the parallax effect with your own two eyes: hold your thumb out at arm's length and watch as it appears to jump around as you blink one eye and then the other. The closer the object is, the bigger its displacement will be. And the bigger your baseline is between two vantage points, the smaller the displacement will be that you can discern. Your eyes have a baseline of about six centimeters; Gaia's was 300 million kilometers, set by the opposite sides of Earth's orbit around the sun. A Gaia predecessor, ESA's Hipparcos mission, used that same gigantic baseline to survey the sky from 1989 until it ran out of fuel in 1993. But the technology of the time limited Hipparcos's astrometric reckoning to a precision of about one milliarcsecond, with high-quality measurements only for about 100,000 objects within about 200 parsecs (650 light-years) of the solar system. (A single arc second is a very small angular slice of the heavens, making Hipparcos's milliarcsecond precision all the more noteworthy. The moon, for instance, takes up about 1,800 arc seconds in Earth's sky.) As impressive as Hipparcos was, Gaia shattered the records set by its precursor—although not without challenges, such as precision-threatening sprays of stray light that leaked around the edges of the spacecraft's sun shield and through a hole punched by an errant micrometeoroid. But ultimately, Brown says, Gaia's measurements achieved on the order of 100 times greater precision—reaching about 10 microarcseconds. And within the Milky Way, the spacecraft's view encompassed 100 times more volume and included 10 times more targets. The numbers underpinning Gaia are so alien to everyday experience that they border on nonsensical, says Michael Perryman, a former ESA researcher, who has served as project scientist for Hipparcos and Gaia and played a crucial developmental role for both missions. He likens Hipparcos's precision to discerning a second's worth of growth of a human hair from a distance of one meter. Gaia's 100-times-better view, he says, is more like measuring the width of a single hydrogen atom from the same distance. Another comparison involves the size of the two missions' datasets. When the Hipparcos team printed out its complete catalog, Perryman recalls, it comprised five thick volumes—almost enough to fill a single shelf of a bookcase. Printing out the full Gaia catalog with the same density of information per page, he says, would require about 10 kilometers of shelf space. 'The mind boggles,' he says. 'It's almost incomprehensible; these are numbers and dimensions we're simply not equipped to visualize, so even the analogies are very difficult to grasp.' The best example of the heights such precision can reach may be Gaia's tour de force determination of the solar system's acceleration with respect to a vast, sky-encompassing field of quasars. Quasars are the conspicuously bright cores of remote galaxies that harbor actively feeding supermassive black holes. As such, quasars are among the most powerful beacons astronomers can use to probe distant regions of the universe. Gaia pinpointed the positions of more than one and a half million of them to establish a fixed backdrop of sorts, against which various minuscule motions of our solar system or other nearby celestial objects could be seen. One motion Gaia managed to measure was an astonishingly small acceleration of just 0.232 nanometer per second squared—a continuous atom-scale deflection in the solar system's 220-kilometer-per-second trajectory through the Milky Way, attributed to the gravitational pull from our galaxy's center some 26,000 light-years away. Writ large, the displacement adds up to less than a meter per day—and essentially reflects the real-time sculpting of our galactic orbit as the solar system carves a path through the Milky Way's gravitational field. 'It's an almost circular motion around the galactic center, and it's directed toward the supermassive black hole there,' says astronomer Sergei Klioner of Germany's Dresden University of Technology, who led much of the work behind the measurement. 'No other observational data could come anywhere close to competing with Gaia here.... You often hear the term 'astronomical' in the sense of something being very large—but this is an example where Gaia has shown us something that's astronomically small.' Now that Gaia has gone dark, there's already talk of what comes next. 'Do we really need another astrometry mission?' asks Brown, who first began working on Gaia in 1997. 'Well, not immediately, but the extremely precise stellar reference frame it gave us—upon which many other observatories depend—will eventually deteriorate because all the stars are moving, right?' ESA is envisioning a follow-on mission, which would potential launching in the 2040s. This time that mission would be optimized for infrared observations to allow astronomers to see through the dust that otherwise clouds their view of the Milky Way's star-packed disk and galactic center. 'It's, in a way, wonderful but also a bit sad that people take Gaia for granted because, my God, it was a tough mission,' Perryman reflects. 'I don't feel sadness that it's gone; I'm just delighted and relieved it lasted so long, and I'm very conscious of how remarkable it is that we live in a time when society is willing to pool its resources to support such things, and we have the technology in place to do them. I hope this period continues—but I worry we've been taking that for granted, too.'

Neanderthal extinction: a space physicist reopens the debate
Neanderthal extinction: a space physicist reopens the debate

Yahoo

time2 days ago

  • Yahoo

Neanderthal extinction: a space physicist reopens the debate

Neanderthals have long been the subject of intense scientific debate. This is largely because we still lack clear answers to some of the big questions about their existence and supposed disappearance. One of the latest developments is a recent study from the University of Michigan, published in the journal Science Advances. It proposes that Neanderthals went extinct for astrophysical reasons. The work was led by Agnit Mukhopadhyay, an expert in space physics, a discipline that studies natural plasmas, especially those found within our own solar system. Plasma is the state of matter that dominates the universe: the Sun and stars are huge balls of plasma, as are the northern lights. Mukhopadhyay's research suggests that a shift in the Earth's magnetic poles around 41,000 years ago, known as the Laschamp event, may have contributed to the extinction of Neanderthals. According to his work, the extreme weakening of the Earth's magnetic field during that event allowed for greater penetration of cosmic and ultraviolet radiation. This would have generated more aggressive environmental conditions that Neanderthals could not withstand, giving our own species, Homo sapiens, an edge. In this context, sapiens would have had an advantage over Neanderthals thanks to their presumed use of close-fitting clothing, ochre – a mineral with protective properties against the sun – and taking shelter in caves. Caves which, by the way, on numerous occasions were inhabited by both Neanderthals and our own species. The hypothesis is interesting, and is based on innovative three-dimensional models of the Earth's geospatial system during this period. However, as with many hypotheses that attempt to explain complex phenomena on the basis of a single variable, its scope and some of the assumptions on which it is based need to be examined more closely. One of the pillars of this hypothesis is that Neanderthals did not wear tight-fitting clothing, and would therefore have been more exposed to the harmful effects of solar radiation. It is true that sewing needles have not been definitvely linked to Neanderthals. The first needles documented in Eurasia are associated with either Denisovan or sapiens populations around 50,000 years ago, and in western Europe they did not appear until around 23,000 years ago. But this does not mean that Neanderthals did not wear clothing. In fact, the Homo sapiens who lived during episodes of extreme cold (such as the Heinrich 4 event, which occurred some 39,600 years ago) did not have sewing needles either, but they did have enough technology to make garments, and possibly tents and footwear. There is ample archaeological evidence of Neanderthals processing hides, such as the systematic use of scrapers and other tools associated with the tanning process. However, the use of fur or clothing has much older origins. In fact, the genetic study of lice has revealed that humans were already wearing clothing at least 200,000 years ago. Furthermore, in cold environments such as those they inhabited in Europe, it would have been unfeasible to survive without some form of body protection. Even if they did not have needles, it is very plausible that they used alternative systems such as ligatures or bone splinters to adapt animal hides to the body. The absence of needles should not be confused with the absence of functional clothing. The study also highlights the use of ochre by Homo sapiens, which it says offered protection against solar radiation. Although experiments have been carried out to demonstrate certain blocking capacities of ochre against ultraviolet (UV) rays, its use by human populations is not limited to a single group. In fact, evidence of pigment use during the same period has been found in Africa, the Near East and the Iberian Peninsula, and among different human lineages. The use of ochre has been documented in Neanderthal contexts for more than 100,000 years, both in Europe and in the Levant. Its application may have had multiple purposes: symbolic, therapeutic, cosmetic, healing, and even an insect repellent. There are no solid grounds for claiming that its use for protective purposes was exclusive to Homo sapiens, especially when both species shared spaces and technologies for millennia. Nor can we be sure that it was used as a protective sunscreen. Leer más: One of the most significant factors may have been the marked difference in population size. There were fewer Neanderthals, meaning they would have been assimilated by the much more numerous populations of Homo sapiens. This assimilation is reflected in the DNA of current populations, suggesting that, rather than becoming extinct, Neanderthals were absorbed into the evolutionary process. Technology also played a part– as far as we know, Neanderthals did not use hunting weapons at a distance. The invention and use of projectiles associated with hunting activities – first in stone and later in hard animal materials – appear to be an innovation specific to Homo sapiens. Their development may have given them an adaptive advantage in open environments, and a greater capacity to exploit different prey and environments. Leer más: Associating the Neanderthal 'extinction' to their supposed failure to adapt to increased solar radiation during the Laschamp excursion oversimplifies a phenomenon that remains the subject of heated debate. Put simply, the archaeological record does not support Mukhopadhyay's hypothesis. There is no evidence of an abrupt demographic collapse coinciding with this geomagnetic event, nor of a widespread catastrophic impact on other human or animal species. Moreover, if solar radiation had been such a determining factor, one would expect high mortality also among populations of sapiens that did not wear tight clothing or live in caves (in warm regions of Africa, for instance). As far as we know, this did not happen. When trying to explain the disappearance of Neanderthals, it is vital that we integrate multiple lines of archaeological, paleoanthropological and genetic evidence. These humans were not simply victims of their own technological clumsiness or of a hostile environment that they failed to cope with. They were an adaptive and culturally complex species that, for more than 300,000 years, survived multiple climatic changes – including other geomagnetic shifts such as the Blake event, which occurred about 120,000 years ago. Neanderthals developed sophisticated tools, dominated vast territories and shared many more traits with us than was assumed for decades. So did the magnetic reversal of the Earth's magnetic poles wipe out the Neanderthals? The answer is: probably not. Este artículo fue publicado originalmente en The Conversation, un sitio de noticias sin fines de lucro dedicado a compartir ideas de expertos académicos. Lee mas: Neanderthals: the oldest art in the world wasn't made by Homo sapiens Modern human DNA contains bits from all over the Neanderthal genome – except the Y chromosome. What happened? How Neanderthal language differed from modern human – they probably didn't use metaphors Las personas firmantes no son asalariadas, ni consultoras, ni poseen acciones, ni reciben financiación de ninguna compañía u organización que pueda obtener beneficio de este artículo, y han declarado carecer de vínculos relevantes más allá del cargo académico citado anteriormente.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store