Strange red nova deaths of shrouded stars investigated by 'stellar Sherlocks'
When you buy through links on our articles, Future and its syndication partners may earn a commission.
The name "Intermediate Luminosity Red Transients" or "ILRTs" might not be an astronomical term you are familiar with, but these rare, brightness-shifting stars have been quite the mystery in astronomical terms.
Now, a team of cosmic detectives, who have dubbed their work "A Study in Scarlett" after the Arthur Conan Doyle novel that first introduced the world to Sherlock Holmes, may have finally cracked the case.
The stellar Sherlocks from across the globe suggest that ILRTs are stars that don't just erupt when they reach the end of their lives but experience "truly terminal" and destructive supernova explosions.
"Following the discovery of three new ILRTs in 2019, we seized the opportunity to study and better understand these phenomena," team leader and National Institute for Astrophysics (INAF) researcher Giorgio Valerin said in a statement. "We have, therefore, collected data for years through telescopes scattered around the world and even several telescopes in orbit.
"We have also resumed the observation campaign of NGC 300 OT, the closest ILRT ever observed, at 'just' six and a half million light-years from us."
The ground-based instruments used included La Palma, La Silla, Las Campanas, and Asiago, while data was also collected from space-based telescopes, including the James Webb Space Telescope (JWST), the Neil Gehrels Swift Observatory (SWIFT), and the Spitzer space telescope.
ILRTs have been somewhat confusing because their brightness is between that of novas, stellar explosions that stars survive, and "classical" supernovas in which a massive star is destroyed, leaving behind a neutron star or a black hole.
The team reached their findings by observing the evolution of four ILRTs. They hoped that this would help them determine whether the star survives these explosions or is completely wiped out.
The key to solving this mystery was observing ILRTs like NGC 300 OT over long periods of time.
"The first images of NGC 300 OT date back to 2008, and in this work, we have observed it again to study its evolution after more than ten years," Valerin said. "The analysis of the images and spectra collected during these observing campaigns has allowed us to monitor the evolution over time of our targets, obtaining information such as the brightness, temperature, chemical composition, and gas velocities associated with each ILRT we have studied."
The Spitzer observations of NGC 300 OT showed this ILRT dimming to a tenth of the brightness of the progenitor star that created this eruption over the course of seven years. Spitzer's images of NGC 300 OT ended when they faded below the detection threshold of this NASA space telescope, which retired in 2020.
Just as Holmes made his name investigating many cases, the team had another set of ILRT data to peruse.
Analyzing JWST observations of the ILRT AT 2019abn located in the nearby galaxy Messier 51 (M51), they found that this transient is declining in brightness in such a way that it is likely to meet the same fate as NGC 300 OT by becoming fainter than its progenitor star.
From this information, the team concluded that ILRTs are explosions that see the total destruction of a star. That is despite the fact that ILRTs appear to be significantly weaker than "classical" core-collapse supernovas.
The question is, how do they remain fainter than similar supernova events?
The team of cosmic detectives suggests that a defining factor in the make-up of ILTRs could be a dense shroud of gas and dust that surrounds the progenitor stars.
This cocoon is heated to temperatures as great as around 10,300 degrees Fahrenheit (5,700 degrees Celsius) over just a few days. The peak in temperature corresponds with a peak in brightness for the ILRT.
As this happens, the gas in this stellar shroud accelerates to speeds as great as 1.6 million miles per hour (700 kilometers per second), which is around 1,000 times as fast as the top speed of a Lockheed Martin F-16 jet fighter.
"This speed is decidedly lower than that of an exploding supernova, which often reaches 10,000 kilometers per second [22 million mph],' team member and INAF researcher Leonardo Tartaglia said. "Yet, we believe that the star may have really exploded, throwing material at thousands of kilometers per second in every direction, but that this explosion was partially suffocated by the dense blanket of gas and dust around the star, which heats up as a consequence of the violent impact."
Thus, the launch of material from around the stellar progenitors of ILRTs can explain how they decrease in brightness over long periods of time.
The team termed this phenomenon an "electron capture supernova" a type of stellar explosion that has been long theorized but had not been believed to have been observed.
Electron-capture supernovas have been of great interest to astronomers because they seem to mark a boundary between stars of around 10 solar masses and more that explode in supernovas to leave behind black holes and neutron stars, and stars with masses more like the sun that don't "go nova" but fade away as white dwarf stellar remnants.
Related Stories:
— Dead stars within supernova explosions could solve the dark matter mystery in 10 seconds
— Could a supernova ever destroy Earth?
— Hubble Telescope sees rare supernova explosion as a violent 'pale blue dot' (image)
"We are finally seeing the events that separate stars destined to explode as classical supernovas from stars that will slowly fade away as white dwarfs," Valerin said.
Perhaps the team would agree with Holmes' words from The Sign of the Four: "When you have eliminated the impossible, whatever remains, however improbable, must be the truth!"The team's research was published across two papers on March 7 in the journal Astronomy & Astrophysics.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
4 hours ago
- Yahoo
Just 1 dose of magic mushroom compound eases depression for at least 5 years in most patients, small study suggests
When you buy through links on our articles, Future and its syndication partners may earn a commission. DENVER—Psilocybin, the main psychoactive ingredient in magic mushrooms, can alleviate depression for at least five years after a single dose, a new study finds. The research, presented June 18 at the Psychedelic Science 2025 conference in Denver, focused on patients with major depressive disorder (MDD), which is often called clinical depression. The serious mood disorder causes a persistent feeling of sadness and a loss of interest or pleasure in activities that were once enjoyable. The most common treatments for MDD include talk therapy and medications such as selective serotonin reuptake inhibitors, and both can take a long time to show any benefits. When early studies hinted at psilocybin's potential as an antidepressant, a team of researchers undertook the first-ever randomized clinical trial to explore the use of the psychedelic for treating severe depression. The trial included 24 patients, half of whom received psilocybin at the very start of the trial and half of whom received the same dose eight weeks later—the "waitlist" group. Each patient also received 11 hours of psychotherapy. Even in that short time frame, "there was a significant reduction in depression in the immediate-treatment group compared to those on the waitlist," study co-author Alan Davis, director of the Center for Psychedelic Drug Research and Education at The Ohio State University, told Live Science. Once all of the patients had completed the four-week study, the psilocybin appeared to be four times more effective than traditional antidepressant medications, based on previous research data. One month after the treatment, 17 patients had relieved symptoms, including 14 who were in full remission from depression. Patients also responded much faster to psilocybin than is typical for conventional antidepressants. But do these benefits of psilocybin last? Related: Magic mushrooms temporarily 'dissolve' brain network responsible for sense of self Very few long-term studies of psilocybin for depression have been conducted to date, said Dr. Charles Raison, a professor of human ecology and psychiatry at the University of Wisconsin-Madison who was not involved in the research. "They are very difficult to do because people drop out," Raison told Live Science in an email. "But also because they go on all sorts of other treatments that obfuscate the degree to which any longer lasting benefits result from the psychedelic or because the participant got therapy or restarted an antidepressant." To investigate whether the benefits for psilocybin lasted and if the patients had experienced any side effects, the researchers contacted the original trial participants several years later to request their enrollment in a follow-up study. Twenty-one patients enrolled, and their clinicians rated any changes in the participants' levels of depression from before the original treatment to the present day. The patients also filled out a series of self-reported, online questionnaires and met up with clinicians to document their ability to engage in everyday tasks, their levels of anxiety and their general mental health. The researchers assumed that the three patients that didn't sign up for the follow up, and the three that didn't complete the questionnaires had not remained in remission. Even so, the researchers found that 67% of the participants who had suffered from depression half a decade earlier remained in remission after a single psychedelic therapy session. These patients also reported less anxiety and less difficulty functioning on a daily basis. In general, the two-thirds of the patients who responded well reported lasting positive changes in their mindsets, emotional health and relationships. "I'm excited by these deeper aspects of their lives that really speaks to the importance of these interventions beyond just reduction of depression," Davis said. RELATED STORIES —Psychedelics rapidly change the brain. Here's how. —Australia clears legal use of MDMA and psilocybin to treat PTSD and depression —'Magic mushroom' treatment for depression inches closer to approval Most of the patients shared that, following the original treatment, they'd engaged in self-reflection and therapy to help understand themselves and navigate life's challenges. Davis hypothesizes that the psychedelic experience catalyzes a deeper therapy process and would like to conduct future studies comparing the relative influences of psilocybin and psychotherapy in alleviating depression. "The biggest caveat of this study is the small sample size, and the fact that the original trial showed larger antidepressant effects than subsequent larger multi-site studies seem to be showing," Raison said. In a multi-site clinical trial with 233 participants, 37% of the 79 who received a single 25 mg dose of psilocybin, coupled with psychotherapy, went into remission from major depression. While these trials report less widespread antidepressant effects, they support the idea that psilocybin can effectively treat depression, Davis said, and he is keen to see how the findings of multi-site trials hold up five years post-treatment.
Yahoo
4 hours ago
- Yahoo
Vera C. Rubin debut images: How to see the groundbreaking space photos from the world's largest camera
When you buy through links on our articles, Future and its syndication partners may earn a commission. The new Vera C. Rubin Observatory is set to release its debut images — taken with the largest digital camera ever built — on Monday (Jun. 23). The world-first images and videos will be ultra-high-definition and will show off the observatory's highly anticipated, cutting-edge capabilities for the first time. Here's what you need to know. If you want to watch from home, a news conference will be streaming on YouTube in English and Spanish at 11:00 a.m. EDT on Monday. The link to watch is posted on the observatory's website, and is also embedded here. If you'd prefer to bask in the awe of the cosmos with friends, you may be able to attend a watch party near you — or even host one of your own. Groups will gather across the globe in planetariums and universities to admire the highly detailed images and videos as they are released. The observatory has shared links to a map of all registered watch parties, as well as a link to sign up to become a host. During the news conference, the observatory team will introduce the Rubin Observatory before showcasing the new images and discussing their significance. Watch parties may also hear from local scientists and special guests. Be sure to check out the details of a watch party before you attend to learn about any extra programming. The observatory, perched high on a mountain in the Chilean Andes, will peer at interstellar comets and dangerous asteroids, as well as larger objects, like twisting galaxies and exploding supernovas. Related: 'People thought this couldn't be done': Scientists observe light of 'cosmic dawn' with a telescope on Earth for the first time ever Inside Rubin lies the world's largest digital camera and six of the largest optical filters ever produced. Together, they allow researchers to observe different facets of the universe in many wavelengths of light and remarkably high detail. The camera will take a new high-resolution photo of the sky around every 40 seconds. The images will then be transmitted via fiber optic cables to a supercomputer in California, which will analyze the photos. When stitched together, the images can act as a time-lapse video of space, one that is planned to span 10 years. RELATED STORIES —Space photo of the week: Observatory, or alien planet? Boggle your mind with this 360-degree image —Vera C. Rubin Observatory: The groundbreaking mission to make a 10-year, time-lapse movie of the universe —3,200-megapixel camera of the future Vera Rubin Observatory snaps record-breaking 1st photos Using its groundbreaking instruments, the observatory is expected to contribute to current understanding of widely debated phenomena, including dark energy and dark matter — two components that are thought to make up a vast majority of the universe, but remain poorly understood. The new images could be the first of many that vastly improve our understanding of the cosmos. Whether you join a watch party or tune in from the comfort of your couch, these photos are not to be missed.
Yahoo
4 hours ago
- Yahoo
Hurricanes and sandstorms can be forecast 5,000 times faster thanks to new Microsoft AI model
When you buy through links on our articles, Future and its syndication partners may earn a commission. A new artificial intelligence (AI) model can predict major weather events faster and more accurately than some of the world's most widely used forecasting systems. The model, called Aurora, is trained on more than 1 million hours of global atmospheric data, including weather station readings, satellite images and radar measurements. Scientists at Microsoft say it's likely the largest dataset ever used to train a weather AI model. Aurora correctly forecast that Typhoon Doksuri would strike the northern Philippines four days before the storm made landfall in July 2023. At the time, official forecasts placed the storm's landfall over Taiwan — several hundred miles away. It also outperformed standard forecasting tools used by agencies, including the U.S. National Hurricane Center and the Joint Typhoon Warning Center. It delivered more accurate five-day storm tracks and produced high-resolution forecasts up to 5,000 times faster than conventional weather models powered by supercomputers. More broadly, Aurora beat existing systems in predicting weather conditions over a 14-day period in 91% of cases, the scientists said. They published their findings May 21 in the journal Nature. Researchers hope Aurora and models like it could support a new approach to predicting environmental conditions called Earth system forecasting, where a single AI model simulates weather, air quality and ocean conditions together. This could help produce faster and more consistent forecasts, especially in places that lack access to high-end computing or comprehensive monitoring infrastructure. Related: Google builds an AI model that can predict future weather catastrophes Aurora belongs to a class of large-scale AI systems known as foundation models — the same category of AI models that power tools like ChatGPT. Foundation models can be adapted to different tasks because they're designed to learn general patterns and relationships from large volumes of training data, rather than being built for a single, fixed task. In Aurora's case, the model learns to generate forecasts in a matter of seconds by analyzing weather patterns from sources like satellites, radar and weather stations, as well as simulated forecasts, the researchers said. The model can then be fine-tuned for a wide range of scenarios with relatively little extra data — unlike traditional forecasting models, which are typically built for narrow, task-specific purposes and often need retraining to adapt. The diverse dataset Aurora is trained on not only results in greater accuracy in general versus conventional methods, but also means the model is better at forecasting extreme events, researchers said. Related stories —Google's DeepMind AI can make better weather forecasts than supercomputers —Is climate change making the weather worse? —What is the Turing test? How the rise of generative AI may have broken the famous imitation game In one example, Aurora successfully predicted a major sandstorm in Iraq in 2022, despite having limited air quality data. It also outperformed wave simulation models at forecasting ocean swell height and direction in 86% of tests, showing it could extract useful patterns from complex data even when specific inputs were missing or incomplete. "It's got the potential to have [a] huge impact because people can really fine tune it to whatever task is relevant to them … particularly in countries which are underserved by other weather forecasting capabilities," study co-author Megan Stanley, a senior researcher at Microsoft, said in a statement. Microsoft has made Aurora's code and training data publicly available for research and experimentation. The model has been integrated into services like MSN Weather, which itself is integrated into tools like the Windows Weather app and Microsoft's Bing search results.