
View Exterior Photos of the 2026 Kia EV4
read full review | See Interior Photos
The Kia EV4 is a new electric compact sedan, and we drove it in Korea ahead of its U.S. debut.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles

Yahoo
an hour ago
- Yahoo
Why India's Budding EV Sector Has Opened Its Doors To China
For decades, China has driven the lion's share of oil demand growth thanks to its remarkable economic boom and large population. However, China is now losing its prominence in global oil markets due to a dramatic slowdown in its economy coupled with the country's ongoing electric vehicle revolution. Last year, nearly half of all new cars sold in China were electric vehicles, including both battery-electric and plug-in hybrid electric vehicles. Indeed, China's rapid adoption of EVs, as well as rapid growth of high-speed rail and natural gas trucks, is displacing traditional fossil fuel demand, with the International Energy Agency (IEA) predicting that China's oil demand will peak as early as 2027. Ironically, the country that is taking over China's mantle in world oil markets is also aspiring to follow in its EV footsteps: India. Unlike China, India's EV sector is still at its infancy, with electric vehicles accounting for just 2.5% of all cars sold in the country in 2024. However, India has big EV ambitions, with the Indian government having set a target for EVs to make up 30% of total passenger vehicle sales by 2030. To accomplish this, India's EV sector is forging close ties with Chinese EV manufacturers at a time when Washington has been keeping Chinese EV giants at bay. India is relying on Chinese EV tech to bridge the gap until the domestic sector is ready to compete on the global stage. Industry analysts note that without access to Chinese technologies—including batteries, drivetrain components, and EV software—India would likely face slower product rollouts, limited model variety, and higher costs during its growth phase. This marks a clear pivot from just a few years ago, when India restricted the operations of firms like BYD and banned popular Chinese apps such as TikTok and Shein after deadly clashes at the New Delhi appears to be taking a more calculated stance. In March, the government reduced tariffs on over 35 EV components, many of which are imported from China, making it easier for automakers to source critical parts. A few weeks later, India's Ministry of Heavy Industries unveiled a new EV policy slashing import duties on fully built EVs from 110% to 15%, provided manufacturers invest and set up local production. This dual-pronged approach aims to attract international players while building out domestic supply chains. Experts view these shifts as pragmatic. Leading Indian EV makers—such as Tata Motors, Ola Electric, and Mahindra & Mahindra—continue to depend on Chinese vendors for components like battery cells, power control units, and electric motors, even though assembly is carried out in India. 'The aim is to build a resilient domestic ecosystem, not to isolate it, unlike the more aggressive decoupling seen in the U.S. with China,' said Shubham Munde, senior analyst at intelligence firm Market Research Future. Yet this growing alignment between Indian and Chinese EV sectors is creating both opportunity and competition. MG Motor—a joint venture between India's JSW Group and China's state-owned automaker SAIC—has managed to double its market share over the past year, putting pressure on homegrown giants like Tata Motors. Its model, the MG Windsor, is now India's top-selling electric car, highlighting how joint ventures are gaining traction. At the same time, India's EV landscape remains deeply fragmented. According to Bernstein Research, just four legacy automakers dominate 80% of the electric mobility market, leaving over 150 EV startups struggling to establish a foothold in an increasingly competitive space. Government policy appears to be playing an outsized role in the EV trajectories of different countries. In its 2025 Electric Vehicles Outlook, Bloomberg New Energy Finance (BNEF) cut both its near-term and long-term passenger EV adoption outlook in the United States for the first time ever, citing key policy changes including rollback of national fuel-economy targets as well as the removal of supportive elements of the Inflation Reduction Act (IRA) by the Trump administration. In contrast, S&P Global Mobility has forecast strong growth for India's nascent EV sector, projecting that production of battery-electric passenger vehicles will increase by 140% year-over-year in 2025 to roughly 301,400 units. That would represent about 6% of the estimated 5.16 million passenger vehicles expected to be built in India that year. Still, the road to India's 2030 goal may be steep. According to S&P, India would need to boost EV adoption by approximately 380 basis points annually to reach 30% market share—nearly double the current growth rate of around 200 basis points per year since 2021. Compounding the challenge is the lack of a unified long-term roadmap and the pending expiration of several state-level EV incentive programs. By Alex Kimani for More Top Reads From this article on Fehler beim Abrufen der Daten Melden Sie sich an, um Ihr Portfolio aufzurufen. Fehler beim Abrufen der Daten Fehler beim Abrufen der Daten Fehler beim Abrufen der Daten Fehler beim Abrufen der Daten


CNET
an hour ago
- CNET
iPhone 20 Rumors Point to All-Glass 'Waterfall' Screen and Anniversary-Inspired Name
If Apple really wants to make a splash for the iPhone's 20th birthday in 2027, it may do more than just redesign the camera bump. Apple's engineers are prototyping an iPhone internally nicknamed "Glass Wing," according to Bloomberg reporter Mark Gurman, speaking on the Geared Up podcast this week, with a display that flows like a waterfall not only down the left and right sides, but also over the top and bottom of the phone. Gurman called it the "iPhone X design but on steroids," and said that this is the phone that iOS 26 was designed for. A foldable is expected to release at the end of 2026. Gurman also floated the idea that Apple could brand the device the "iPhone 20," sidestepping an "iPhone 19" to sync the model number with the anniversary year. A quad-curved, bezel-free screen would mark the iPhone's most dramatic hardware overhaul since the iPhone X killed the Home button in 2017. Reports out of South Korea's ETNews say Apple is exploring "four-edge bending" OLED tech to make that borderless look possible, while Gurman's Power On newsletter describes a "mostly glass, curved iPhone without any cutouts in the display," hinting that the selfie camera and Face ID sensors could hide under the display. If Apple really does jump straight to an iPhone 20, the rename would echo this year's jump from iOS 18 to iOS 26 and 2017's leap from the iPhone 8 to the iPhone X, signaling just how big a redesign Apple thinks this phone will be.
Yahoo
2 hours ago
- Yahoo
Intel claims 18A, the node Pat bet the company on, is either 25% faster or 38% more efficient than Intel 3. Though that's a node Intel didn't have enough faith in to release for desktops or laptops
When you buy through links on our articles, Future and its syndication partners may earn a commission. Intel has been deep diving on its upcoming 18A chip node at the VLSI Symposium in Japan. And if the company's claims are to be believed, 18A is looking pretty sweet. Among other factoids, Intel says it's either up to 25% faster at the same power level, or up to 38% more efficient at the same frequency compared with the Intel 3 node. That's very promising for laptop battery life in particular. Of course, Intel 3 is a node of which we have absolutely zero experience. That's because Intel has never used Intel 3 for a consumer chip, choosing instead to go with TSMC's N3 node for both its Lunar Lake laptop chip and latest Arrow Lake desktop and mobile CPU family, as used for the Intel Core Ultra 9 285K. The most advanced Intel node in the PC is Intel 7, which is a rebrand of Intel's infamous 10nm technology, which ended up arriving the better part of a decade late. Anyway, what to make of these claims from Intel? Specifically and compared to Intel 3, Intel says that in low voltage 0.65 V operation, 18A is either 18% faster or 38% more efficient, while in high voltage 1.1 V mode, it's 25% faster or 36% more efficient. In other words, in low voltage mode you can either run the same clock speed as Intel 3 and use 38% less power, or use the same power and enjoy 18% faster clocks. Meanwhile, in the high performance, high voltage mode, you can choose between either 25% higher clocks for the same power consumption as Intel 3 or the same clocks with 36% lower consumption. Any way you slice it, these are very nice numbers. It's just hard to draw too many conclusions given the scarcity of comparable Intel chips on the Intel 3 node. For now, it's only the Xeon 6 Granite Rapids server CPU, launched earlier this year, that's built on Intel 3. Moreover, the fact that Intel passed over Intel 3 for Lunar Lake and Arrow Lake hardly seems like a vote of confidence in its own manufacturing tech. The point being that Intel also made some bullish claims about Intel 3 and an 18% performance-per-watt increase over Intel 4, but it seems like we'll never get an Intel 3 chip in a PC. What's more, even if these claims are accurate, there's the question of yields. Can Intel actually produce 18A chips at scale? Answers to all these questions will presumably come later this year when the Panther Lake mobile CPU with an 18A CPU die is supposed to be released. If Intel's numbers are accurate, Panther Lake ought to be a much more efficient laptop CPU, enabling clearly improved battery life. At least, that's compared to Intel 3. Exactly how 18A compares with TSMC N3, which is the node used by Intel for Lunar Lake's CPU cores is a separate matter. The takeaway here, then, is that this is all very complicated. Intel has released some very promising numbers. But they involve comparison with another Intel node which itself is only available in a range of server chips and it's unclear how 18A stacks up against TSMC's competing technology. The proof will be in the processing, so to speak, when Panther Lake arrives at the end of this year. It's been a long time coming, but no CPU has ever felt as critical for Intel as Panther Lake.