logo
Signs Of Alien Life? New Study Finds Potential Biosignatures On Ocean World

Signs Of Alien Life? New Study Finds Potential Biosignatures On Ocean World

Yahoo02-06-2025

Data from the James Webb Space Telescope on exoplanet K2-18b has revealed the "strongest hints yet of biological activity outside the solar system," according to a University of Cambridge study. Credit: Space.com | animations: ESA/Hubble, M. Kornmesser / NASA | edited by Steve Spaleta

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

National Grid to hand quantum computing start-up £50m boost
National Grid to hand quantum computing start-up £50m boost

Yahoo

timean hour ago

  • Yahoo

National Grid to hand quantum computing start-up £50m boost

A Cambridge start-up developing quantum computing data centres is poised to secure a £50m funding boost from the National Grid. Nu Quantum, which was spun out of the University of Cambridge in 2018, has been backed by the FTSE 100 utility giant amid a surge in investment across the sector. With a team of 60 and led by Carmen Palacios-Berraquero, its 33-year-old founder, Nu Quantum has been developing hardware that can be used in data centres powered by quantum computing. Quantum computers exploit the peculiar principles of quantum mechanics in ways that could make them significantly more powerful than today's most advanced machines. US tech giants including Google, IBM and Microsoft have spent years attempting to crack the technology, while China has been investing billions of pounds in state-backed facilities. Britain has also produced a string of cutting-edge start-ups in recent years. This includes Nu Quantum, which has received funding from the UK Government. Other investors in the business include Amadeus Capital Partners and UK-listed fund Seraphim Space. The company has gained momentum in recent years by developing what it calls a Quantum Networking Unit, which can be deployed to data centres. The start-up said this technology could move quantum from 'lab demonstrations to commercial infrastructure'. Ms Palacios-Berraquero said: 'We're moving quantum networking from academic research to practical, data centre-ready deployment. 'Our focus now is on working closely with partners and customers to build scalable, modular quantum systems that deliver real commercial value.' National Grid's planned £50m investment comes amid growing optimism about quantum computing technology, which could have profound implications for scientific research, climate modelling and mathematics. Breakthroughs in the technology are also of interest to the national security community, with quantum machines potentially so powerful that current encryption technology could be made obsolete. This month, Jensen Huang, the Nvidia chief executive, said he believed quantum was reaching an 'inflection point'. Meanwhile, the recent success of Britain's quantum sector, particularly in Oxford and Cambridge, has led to a surge in interest from US rivals. This month, Oxford Ionics was sold to America's IonQ in a $1bn (£750m) deal. A Nu Quantum spokesman said: 'We do not comment on ongoing fundraising activity.' National Grid Partners did not respond to a request for comment. Broaden your horizons with award-winning British journalism. Try The Telegraph free for 1 month with unlimited access to our award-winning website, exclusive app, money-saving offers and more. Sign in to access your portfolio

A spinning universe could crack the mysteries of dark energy and our place in the multiverse
A spinning universe could crack the mysteries of dark energy and our place in the multiverse

Yahoo

time2 days ago

  • Yahoo

A spinning universe could crack the mysteries of dark energy and our place in the multiverse

When you buy through links on our articles, Future and its syndication partners may earn a commission. What is dark energy? Why does dark energy seem to be weakening? Is our universe part of a larger multiverse? What lies beyond the boundary of a black hole?The universe seems to be rotating, and if that is the case, then this could have major ramifications for some of the biggest questions in science, including those above. That's according to Polish theoretical physicist Nikodem Poplawski of the University of New Haven, who is well-known for his theory that black holes act as doorways to other universes. "Dark energy is one of the most intriguing mysteries of the universe. Many researchers have tried to explain it by modifying equations of general relativity or suggesting the existence of new fields that could accelerate the universe's expansion," Poplawski told "It would be amazing if a simple rotation of the universe was the origin of dark energy, especially that it predicts its weakening." Evidence that the universe is rotating was recently delivered by the James Webb Space Telescope (JWST), which found that two-thirds of galaxies are rotating in the same direction. This suggests a lack of randomness and a preferred direction for cosmic rotation. Additionally, Poplawski pointed out that other astronomical data seem to show that the angle between the most likely axis of the spinning galaxies and the axis of the bulk flow of nearby galaxy clusters is 98 degrees, meaning they are nearly perpendicular in relation to each other. That is something that is in accordance with the hypothesis that the universe is rotating. To understand why a rotating universe implies more than one universe, Poplawski refers to "frames of reference." These are sets of coordinate systems that are integral to physics, which allow motion and rest to be measured. Imagine two scientists, Terra and Stella. Each is in their own frame of reference, but Terra on Earth, Stella in a spacecraft traveling past our planet. Terra sees Stella's frame of reference (the spacecraft) moving in relation to her own (the Earth), which is at rest. Stella, meanwhile, sees her frame of reference at rest while it is Terra's frame of reference in motion as the Earth races pointed out that if the universe is rotating, then its frame of reference is rotating, and that only makes sense if it is rotating in relation to at least one other frame of reference. "If the universe is rotating, it must rotate relative to some frame of reference corresponding to something bigger," he continued. "Therefore, the universe is not the only one; it is a part of a multiverse." For Poplawski, the simplest and most natural explanation of the origin of the rotation of the universe is black hole cosmology. Black hole cosmology suggests that every black hole creates a new baby universe on the other side of its event horizon, the one-way light-trapping surface that defines the outer boundary of a black hole. The theory replaces the central singularity at the heart of a black hole with "spacetime torsion" that gives rise to repulsive gravity that kick-starts the expansion of a new universe. "Because all black holes form from rotating objects, such as rotating stars or in the centers of rotating galaxies, they rotate too," Poplawski said. "The universe born in a rotating black hole inherits the axis of rotation of the black hole as its preferred axis." In other words, our universe may be spinning in a preferred direction because that is the way that the black hole it is sealed within is spinning. "A black hole becomes an Einstein-Rosen bridge or a 'wormhole' from the parent universe to the baby universe," Poplawski explained. "Observers in the new universe would see the other side of the parent black hole as a primordial white hole." In lieu of discovering a primordial white hole in our universe leading to our parent black hole and progenitor universe, the strongest evidence of this black hole cosmology is a preferred direction or "rotational asymmetry" in our universe. That can be seen in rotational asymmetry in the galaxies. "The motion of individual galaxies in that baby universe will be affected by the rotation of that universe," Poplawski said. "The galaxies will tend to align their axes of rotation with the preferred axis of the rotation of the universe, resulting in the rotation asymmetry, which can be observed."That's something astronomers are starting to course, that means that every black hole in our universe is a doorway to another baby cosmos. These infant universes are protected from investigation by the event horizon of their parent black holes, which prevents any signal from being received from the interior of a black a trip through this cosmic doorway would be impossible for a budding "multinaut" due to the immense gravity surrounding a black hole, which would give rise to tidal forces that would "spaghettify" such an intrepid explorer. Even if such a multinaut were to survive the journey, just as nothing can escape a black hole, nothing can enter a white hole, meaning there would be no return or opportunity to file a report! Even grimmer than this, there's no guarantee that the laws of physics are the same in a baby universe as their parent universe, meaning an unpredictable fate and potentially a messy death for a hardy multinaut able to brave a black hole doorway. Anyway, before we rush off to explore other universes, there are mysteries to be investigated right here in our own universe. At the forefront of these is the mysterious force of dark energy. Dark energy is a placeholder name given to whatever force is causing the universe to expand at an accelerating rate. Dark energy currently dominates the universe, accounting for 68% of the total cosmic matter-energy budget. This wasn't always the way, the universe's earliest epoch, it was dominated by the energy of the Big Bang, causing it to inflate. As the universe entered a matter-dominated epoch ruled by gravity, this inflation slowed to a near stop. This should have been it for the cosmos, but around 9 billion to 10 billion years after the Big Bang, the universe started to expand again, with this expansion accelerating, leading to the dark-energy dominated epoch. To understand why this is such a worrying puzzle, imagine giving a child on a swing a single push, watching their motion come to a halt, and then, for no discernible reason, they start swinging again, and this motion gets faster and faster. As if dark energy weren't strange enough already, recent results from the Dark Energy Spectroscopic Instrument (DESI) have indicated that this mysterious force is weakening. This is something that seemingly defies the standard model of cosmology or the Lambda Cold Dark Matter (LCDM) model, which relies on dark energy (represented by the cosmological constant or Lambda) being Poplawski theorizes that a spinning universe can both account for dark energy and explain why it is weakening. "Dark energy would emerge from the centrifugal force in the rotating universe on large scales," the theoretical physicist explained. "If the universe were flat, the centrifugal force would act only in directions perpendicular to the preferred axis." However, in Poplawski's black hole theory of cosmology, because the universe created by a black hole is closed, moving away in any direction would eventually lead to coming back from the opposite direction. That would mean the centrifugal force arising from a spinning universe becomes a force acting in all directions away from the universe's parent primordial white hole. "The magnitude of this force is proportional to the square of the angular velocity of the universe and the distance from the white hole," Poplawski said. "This relation takes the form of the force acting on a galaxy due to dark energy, which is proportional to the cosmological constant and the distance from the white hole. Therefore, the cosmological constant is proportional to the square of the angular velocity of the universe."But, how could this explain the DESI observations that seem to indicate that dark energy is getting weaker? "Because the angular momentum of the universe is conserved, it decreases as the universe expands," Poplawski said. "Consequently, the cosmological constant, which is the simplest explanation of dark energy, should also decrease with time. This result is consistent with recent observations by DESI." Related Stories: — Supermassive black holes in 'little red dot' galaxies are 1,000 times larger than they should be, and astronomers don't know why — 'Superhighways' connecting the cosmic web could unlock secrets about dark matter — How does the Cosmic Web connect Taylor Swift and the last line of your 'celestial address?'years To provide some further evidence of Poplawski's concept, more data on the bulk flow of galaxy clusters and on the asymmetry of galaxy rotation axes are needed. This would help further confirm that our universe is rotating. Additionally, more data regarding how dark energy depends on cosmic distances and the progression of time in our 13.7 billion-year-old cosmos could help validate whether the weakening of dark energy is related to the decreasing angular velocity of the universe. "The next step to advance these ideas is to determine the equation describing how the cosmological constant, generated by the angular velocity of the universe, decreases with time, and to compare this theoretical prediction with the observed decrease of dark energy," Poplawski concluded. "This research might involve searching for the metric describing an expanding and rotating universe."A pre-peer-reviewed version of Poplawski's research appears on the paper repository site arXiv.

ESA's Solar Orbiter Should Solve Mystery Of Sun's Outermost Atmosphere
ESA's Solar Orbiter Should Solve Mystery Of Sun's Outermost Atmosphere

Forbes

time2 days ago

  • Forbes

ESA's Solar Orbiter Should Solve Mystery Of Sun's Outermost Atmosphere

ESA's Solar Orbiter mission will face the Sun from within the orbit of Mercury at its closest ... More approach. The European Space Agency's Solar Orbiter mission recently stunned the world with the first-ever full images of our Sun's South pole, proving that this was going to be a mission like no other. Using an orbital gravity assist from the planet Venus, the Solar Orbiter mission spacecraft was able to maneuver into an orbit that has taken it to an angle 17 degrees below the Sun's equator. Over the coming years, the spacecraft will tilt its orbit even further, so the best views are yet to come, says ESA. The 1.2-billion-euro Solar Orbiter mission, with NASA participation, should finally help us understand the origin of the Sun's solar winds as well as our understanding of the Sun's poles. And arguably most importantly, it should solve the puzzle of why our star's outermost atmosphere, or corona, is heated to millions of degrees Kelvin and is thus so much hotter than the Sun's own surface. By contrast, our Sun's visible photosphere, or surface, averages only 5,500 degrees K. With Solar Orbiter, we are clearly seeing energy releases on the nano-flare scale, Daniel Mueller, a solar physicist and ESA project scientist for both ESA's SOHO and Solar Orbiter missions to the Sun, tells me in his office in The Netherlands. But the question is, would these nano-flares continue like that infinitely, or is there a certain lower limit to the production of these nano-flares, Mueller wonders. The puzzle is whether these nano-flares are enough to heat up the Sun's corona to the temperatures with which it is routinely measured. A Unique View Launched in 2020, from its highly elliptical orbit just inside Mercury's perihelion, the closest point in our innermost planet's solar orbit, the ESA spacecraft offers the best views yet of our own yellow dwarf star. We can see on scales down to about 200 kilometers on the Sun, which shows us a lot of dynamics of our star, says Mueller. And thanks to its newly tilted orbit around the Sun, the European Space Agency-led Solar Orbiter spacecraft is the first to image the Sun's poles from outside the ecliptic plane (the imaginary geometric plane in which our Earth orbits the Sun), says ESA. We observed the Sun's North pole at the end of this past April, says Mueller. But we passed the Southern pole first and then the Northern pole six weeks later, he says. At the moment, as seen from Earth, the Solar Orbiter is almost behind the Sun, so the data downlink has slowed to a trickle. But by early October, Mueller expects to have downloaded all the data from Solar Orbiter's Spring polar observations of the Sun. And within a matter of two to three months after the data is on the ground, the first scientific results will have been written up and submitted to journals for publication, says Mueller. These observations are also key to understanding the Sun's magnetic field and why it flips roughly every 11 years, coinciding with a peak in solar activity, says ESA. The spacecraft's instruments show that the Sun's South pole is a bit of a magnetic mess now, with both North and South polarity magnetic fields present, ESA notes. Ready To Flip Right now, there is not a clear dominant magnetic polarity, but a mix of the two, says Mueller. And that is exactly what you would expect to find during the maximum of the Sun's activity cycle, when the magnetic field is about to flip, he says. The real applications are for space weather predictions. Case in point, better space weather forecasting may have saved many of Elon Musk's 523 Starlink satellites that reentered Earth's atmosphere between 2020 and 2024. This period coincides with the rising phase of solar cycle 25, which has shown itself to be more intense than the previous solar cycle, the authors of a 2025 paper appearing in the journal Frontiers in Astronomy and Space Sciences write. Our results indisputably show that satellites reenter faster with higher geomagnetic activity, the authors note. There was a big solar storm that caused the earth's upper Earth atmosphere to expand, so, the satellites experienced more drag, and therefore didn't make it to orbit, says Mueller. One option may have been simply to hold off on launches until this increased period of solar activity enabled a less risky geomagnetic environment in Earth's upper atmosphere. The hope is that the Solar Orbiter mission and other missions like it will lead to better and more reliable space weather predictions that could potentially save hundreds of millions of dollars in the commercial satellite industry. Solar Orbiter should do its share in solving both pure solar physics conundrums as well as in more practical applications like space weather. The good news is that the spacecraft still has plenty of fuel left. Our current funding goes until the end of 2026, but because we had a picture-perfect launch provided by United Launch Alliance and NASA, we saved a lot of fuel, says Mueller. So, the onboard fuel reserves are so large that we can keep going for a long time, he says.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store