Big Bang theory is wrong, claim scientists
The Big Bang theory is wrong and the universe is sitting inside a black hole, scientists have suggested.
Researchers have believed everything that exists exploded from a single point of infinite density, or singularity, since the 1930s, when Georges Lemaitre, a Belgian theoretical physicist, proposed that the universe emerged from a 'primeval atom' – the theory known as the Big Bang.
Now an international team of physicists, led by the University of Portsmouth's Institute of Cosmology and Gravitation, has suggested instead that the universe formed following a huge gravitational collapse that generated a massive black hole.
Matter within the black hole was crunched down before the huge amounts of stored energy caused it to bounce back like a compressed spring, creating our universe.
The new theory has been named Black Hole Universe and suggests that, rather than the birth of the universe being from nothing, it is the continuation of a cosmic cycle.
It also suggests that the edge of our universe is the event horizon of a black hole, from which light cannot escape, making it impossible for us to see beyond into our parent universe. It implies other black holes may also contain unseen universes.
Prof Enrique Gaztañaga said: 'We've shown that gravitational collapse does not have to end in a singularity and found that a collapsing cloud of matter can reach a high-density state and then bounce, rebounding outward into a new expanding phase.
'What emerges on the other side of the bounce is a universe remarkably like our own. Even more surprisingly, the rebound naturally produces a phase of accelerated expansion driven not by a hypothetical field but by the physics of the bounce itself.
'We now have a fully worked-out solution that shows the bounce is not only possible – it's inevitable under the right conditions.'
The Big Bang theory was based on classic physics, but scientists have struggled to make it fit with known effects of quantum mechanics, which sets a limit on how much matter can be compressed.
Physicists such as Roger Penrose and Prof Stephen Hawking had suggested that gravitational collapse inside a black hole must lead to a singularity, but under the new model that does not need to happen. Matter does not need to crunch down infinitely, just enough so it can bounce back.
Unlike the Big Bang theory, the new theory model aligns with both the general theory of relativity and quantum physics.
Prof Gaztañaga added: 'In contrast to the famous singularity theorems by Penrose and Hawking, which assume that matter can be compressed indefinitely, we rely on the fact that quantum physics places fundamental limits on how much matter can be compressed.
'The Black Hole Universe also offers a new perspective on our place in the cosmos. In this framework, our entire observable universe lies inside the interior of a black hole formed in some larger 'parent' universe.
'We are not special. We are not witnessing the birth of everything from nothing, but rather the continuation of a cosmic cycle – one shaped by gravity, quantum mechanics, and the deep interconnections between them.'
The theory that the universe might exist inside a black hole was first proposed in 1972 by Raj Kumar Pathria, an Indian theoretical physicist, but gained little traction.
However, recent observations by the James Webb Space Telescope have reignited interest in the concept.
In March, images of early galaxies showed that two-thirds were spinning clockwise, while a third were rotating anti-clockwise. In a random universe, the distribution should be even – so something was causing an anomaly.
One explanation is that the universe was born rotating, which would occur if it had been created in the interior of a black hole.
Lior Shamir, an associate professor of computer science at Kansas State University said: 'That explanation agrees with theories such as black hole cosmology, which postulates that the entire universe is the interior of a black hole.'
Black holes form when the core of a massive star collapses under its own galaxy, leading to a supernova explosion. They cannot be seen because of the strong gravity that is pulling light into the black hole's centre.
However, scientists can see the effects of its strong gravity on the stars and gases around it, and it sometimes forms an accretion disc of spiralling gas which emits x-rays.
Under the theory of black hole cosmology, each black hole could produce a new 'baby universe' connected to the outside universe through a an Einstein-Rosen bridge, or a 'wormhole'.
Scientists are hoping that the new model may be able to explain other mysteries in the universe, such as the origin of supermassive black holes, the nature of dark matter, or the formation and evolution of galaxies.
The new research was published in the journal Physical Review D.
Broaden your horizons with award-winning British journalism. Try The Telegraph free for 1 month with unlimited access to our award-winning website, exclusive app, money-saving offers and more.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
5 hours ago
- Yahoo
Scientists Working to Decode Signal From Earliest Years of Universe
As mysterious as the Big Bang that gave birth to the universe is the brief but tumultuous period that immediately followed it. How did the cosmos transform from a uniform sea of darkness into a chaotic swirl brimming with radiant stars? What were these first stars like, and how were they born? So far, we have very strong suspicions, but no hard answers. One reason is that the light from this period, called the cosmic dawn, is extremely faint, making it nearly impossible to infer the traits of these first cosmic objects, let alone directly observe them. But that's about to change, according to a team of international astronomers. In a new study published in the journal Nature Astronomy, the astronomers argue that we're on the verge of finally decoding a radio signal that was emitted just one hundred millions years after the Big Bang. Known as the 21 centimeter signal, which refers to its distinct wavelength, this burst of radiation was unleashed as the inchoate cosmos spawned the earliest stars and black holes. "This is a unique opportunity to learn how the universe's first light emerged from the darkness," said study co-author Anastasia Fialkov, an astronomer from the University of Cambridge in a statement about the work. "The transition from a cold, dark universe to one filled with stars is a story we're only beginning to understand." After several hundred thousand years of cooling following the Big Bang, the first atoms to form in the universe were overwhelmingly neutral hydrogen atoms made of one positively charged proton and one negatively charged electron. But the formation of the first stars unbalanced that. As these cosmic reactors came online, they radiated light energetic enough to reionize this preponderance of neutral hydrogen atoms. In the process, they emitted photons that produced light in the telltale 21 centimeter wavelength, making it an unmistakeable marker of when the first cosmic structures formed. Deciphering these emissions would be tantamount to obtaining a skeleton key to the dawn of the universe. And drum roll, please: employing the Radio Experiment for the Analysis of Cosmic Hydrogen telescope, which is currently undergoing calibration, and the enormous Square Kilometer Array, which is under construction Australia, the researchers say they've developed a model that can tease out the masses of the first stars, sometimes dubbed Population III stars, that are locked inside the 21 centimeter signal. While developing the model, their key revelation was that, until now, astronomers weren't properly accounting for the impact of star systems called x-ray binaries among these first stars. These are systems where a black hole or neutron star is stripping material off a more ordinary star that's orbiting it, producing light in the x-ray spectrum. In short, it appears that x-ray binaries are both brighter and more numerous than what was previously thought. "We are the first group to consistently model the dependence of the 21-centimeter signal of the masses of the first stars, including the impact of ultraviolet starlight and X-ray emissions from X-ray binaries produced when the first stars die," said Fialkov. "These insights are derived from simulations that integrate the primordial conditions of the universe, such as the hydrogen-helium composition produced by the Big Bang." All told, it's another promising leap forward in the field of radio astronomy, where recent advances have begun to reveal an entire "low surface brightness" universe — and a potentially profound one as well, with the promise to illuminate our understanding of the cosmic dawn as never never before. "The predictions we are reporting have huge implications for our understanding of the nature of the very first stars in the universe," said co-author Eloy de Lera Acedo, a Cambridge astronomer and a principal investigator of the REACH telescope. "We show evidence that our radio telescopes can tell us details about the mass of those first stars and how these early lights may have been very different from today's stars." More on astronomy: Scientists Investigating Small Orange Objects Coating Surface of the Moon
Yahoo
a day ago
- Yahoo
How could an explosive Big Bang be the birth of our universe?
Curious Kids is a series for children of all ages. If you have a question you'd like an expert to answer, send it to curiouskidsus@ How can a Big Bang have been the start of the universe, since intense explosions destroy everything? – Tristan S., age 8, Newark, Delaware Pretend you're a perfectly flat chess piece in a game of chess on a perfectly flat and humongous chessboard. One day you look around and ask: How did I get here? How did the chessboard get here? How did it all start? You pull out your telescope and begin to explore your universe, the chessboard…. What do you find? Your universe, the chessboard, is getting bigger. And over more time, even bigger! The board is expanding in all directions that you can see. There's nothing that seems to be causing this expansion as far as you can tell – it just seems to be the nature of the chessboard. But wait a minute. If it's getting bigger, and has been getting bigger and bigger, then that means in the past, it must have been smaller and smaller and smaller. At some time, long, long ago, at the very beginning, it must have been so small that it was infinitely small. Let's work forward from what happened then. At the beginning of your universe, the chessboard was infinitely tiny and then expanded, growing bigger and bigger until the day that you decided to make some observations about the nature of your chess universe. All the stuff in the universe – the little particles that make up you and everything else – started very close together and then spread farther apart as time went on. Our universe works exactly the same way. When astronomers like me make observations of distant galaxies, we see that they are all moving apart. It seems our universe started very small and has been expanding ever since. In fact, scientists now know that not only is the universe expanding, but the speed at which it's expanding is increasing. This mysterious effect is caused by something physicists call dark energy, though we know very little else about it. Astronomers also observe something called the Cosmic Microwave Background Radiation. It's a very low level of energy that exists all throughout space. We know from those measurements that our universe is 13.8 billion years old – way, way older than people, and about three times older than the Earth. If astronomers look back all the way to the event that started our universe, we call that the Big Bang. Many people hear the name 'Big Bang' and think about a giant explosion of stuff, like a bomb going off. But the Big Bang wasn't an explosion that destroyed things. It was the beginning of our universe, the start of both space and time. Rather than an explosion, it was a very rapid expansion, the event that started the universe growing bigger and bigger. This expansion is different than an explosion, which can be caused by things like chemical reactions or large impacts. Explosions result in energy going from one place to another, and usually a lot of it. Instead, during the Big Bang, energy moved along with space as it expanded, moving around wildly but becoming more spread out over time since space was growing over time. Back in the chessboard universe, the 'Big Bang' would be like the beginning of everything. It's the start of the board getting bigger. It's important to realize that 'before' the Big Bang, there was no space and there was no time. Coming back to the chessboard analogy, you can count the amount of time on the game clock after the start but there is no game time before the start – the clock wasn't running. And, before the game had started, the chessboard universe hadn't existed and there was no chessboard space either. You have to be careful when you say 'before' in this context because time didn't even exist until the Big Bang. You also have wrap your mind around the idea that the universe isn't expanding 'into' anything, since as far as we know the Big Bang was the start of both space and time. Confusing, I know! Astronomers aren't sure what caused the Big Bang. We just look at observations and see that's how the universe did start. We know it was extremely small and got bigger, and we know that kicked off 13.8 billion years ago. What started our own game of chess? That's one of the deepest questions anyone can ask. Hello, curious kids! Do you have a question you'd like an expert to answer? Ask an adult to send your question to CuriousKidsUS@ Please tell us your name, age and the city where you live. And since curiosity has no age limit – adults, let us know what you're wondering, too. We won't be able to answer every question, but we will do our best. This article is republished from The Conversation, a nonprofit, independent news organization bringing you facts and trustworthy analysis to help you make sense of our complex world. It was written by: Michael Lam, Rochester Institute of Technology Read more: After our universe's cosmic dawn, what happened to all its original hydrogen? Hubble in pictures: astronomers' top picks Curious Kids: Can people colonize Mars? Michael Lam does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.
Yahoo
a day ago
- Yahoo
How could an explosive Big Bang be the birth of our universe?
Curious Kids is a series for children of all ages. If you have a question you'd like an expert to answer, send it to curiouskidsus@ How can a Big Bang have been the start of the universe, since intense explosions destroy everything? – Tristan S., age 8, Newark, Delaware Pretend you're a perfectly flat chess piece in a game of chess on a perfectly flat and humongous chessboard. One day you look around and ask: How did I get here? How did the chessboard get here? How did it all start? You pull out your telescope and begin to explore your universe, the chessboard…. What do you find? Your universe, the chessboard, is getting bigger. And over more time, even bigger! The board is expanding in all directions that you can see. There's nothing that seems to be causing this expansion as far as you can tell – it just seems to be the nature of the chessboard. But wait a minute. If it's getting bigger, and has been getting bigger and bigger, then that means in the past, it must have been smaller and smaller and smaller. At some time, long, long ago, at the very beginning, it must have been so small that it was infinitely small. Let's work forward from what happened then. At the beginning of your universe, the chessboard was infinitely tiny and then expanded, growing bigger and bigger until the day that you decided to make some observations about the nature of your chess universe. All the stuff in the universe – the little particles that make up you and everything else – started very close together and then spread farther apart as time went on. Our universe works exactly the same way. When astronomers like me make observations of distant galaxies, we see that they are all moving apart. It seems our universe started very small and has been expanding ever since. In fact, scientists now know that not only is the universe expanding, but the speed at which it's expanding is increasing. This mysterious effect is caused by something physicists call dark energy, though we know very little else about it. Astronomers also observe something called the Cosmic Microwave Background Radiation. It's a very low level of energy that exists all throughout space. We know from those measurements that our universe is 13.8 billion years old – way, way older than people, and about three times older than the Earth. If astronomers look back all the way to the event that started our universe, we call that the Big Bang. Many people hear the name 'Big Bang' and think about a giant explosion of stuff, like a bomb going off. But the Big Bang wasn't an explosion that destroyed things. It was the beginning of our universe, the start of both space and time. Rather than an explosion, it was a very rapid expansion, the event that started the universe growing bigger and bigger. This expansion is different than an explosion, which can be caused by things like chemical reactions or large impacts. Explosions result in energy going from one place to another, and usually a lot of it. Instead, during the Big Bang, energy moved along with space as it expanded, moving around wildly but becoming more spread out over time since space was growing over time. Back in the chessboard universe, the 'Big Bang' would be like the beginning of everything. It's the start of the board getting bigger. It's important to realize that 'before' the Big Bang, there was no space and there was no time. Coming back to the chessboard analogy, you can count the amount of time on the game clock after the start but there is no game time before the start – the clock wasn't running. And, before the game had started, the chessboard universe hadn't existed and there was no chessboard space either. You have to be careful when you say 'before' in this context because time didn't even exist until the Big Bang. You also have wrap your mind around the idea that the universe isn't expanding 'into' anything, since as far as we know the Big Bang was the start of both space and time. Confusing, I know! Astronomers aren't sure what caused the Big Bang. We just look at observations and see that's how the universe did start. We know it was extremely small and got bigger, and we know that kicked off 13.8 billion years ago. What started our own game of chess? That's one of the deepest questions anyone can ask. Hello, curious kids! Do you have a question you'd like an expert to answer? Ask an adult to send your question to CuriousKidsUS@ Please tell us your name, age and the city where you live. And since curiosity has no age limit – adults, let us know what you're wondering, too. We won't be able to answer every question, but we will do our best. This article is republished from The Conversation, a nonprofit, independent news organization bringing you facts and trustworthy analysis to help you make sense of our complex world. It was written by: Michael Lam, Rochester Institute of Technology Read more: After our universe's cosmic dawn, what happened to all its original hydrogen? Hubble in pictures: astronomers' top picks Curious Kids: Can people colonize Mars? Michael Lam does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.