Latest news with #magneticfield

Yahoo
4 days ago
- Science
- Yahoo
As Earth's Magnetic Field Grows Stronger, Oxygen Levels Rise
When the magnetic field around the Earth grows stronger, oxygen levels rise. That is the surprising finding of a new study looking at more than half a billion years of planetary history. Researchers can track the rise and fall in oxygen levels by studying charcoal left over from ancient wildfires. The more oxygen, the larger the fires. And they can gauge changes in the geomagnetic field by studying rocks formed by ancient volcanic eruptions. Magnetic crystals found in cooling lava align with the geomagnetic field, offering some indication of its strength. The new study combined these data, revealing a powerful link between oxygen levels and the strength of the geomagnetic field. Over the last 540 million years, the strength of the magnetic field has trended up, and so has the level of oxygen, making the planet more hospitable to life. The findings were published in Science Advances. 'We don't really have a good explanation for it,' coauthor Benjamin Mills, of the University of Leeds, told Nature, though he offered a few ideas. As the tectonic plates have shifted, over hundreds of millions of years, their movements have, at times, unleashed essential nutrients, such as zinc and phosphorus, into the ocean, fueling massive algal blooms. Those blooms produced huge volumes of oxygen. It may be the case, scientists propose, that the same currents driving the movement of the tectonic plates may also be affecting the Earth's iron core, the source of its magnetic field. Can Toxic Mining Waste Help Remove CO2 from the Atmosphere?


Sustainability Times
4 days ago
- Science
- Sustainability Times
'Earth's Core Is Acting Up': NASA Links Planet-Wide Disturbance to Mysterious Energy Surge Emerging From Deep Within the Mantle
IN A NUTSHELL 🌍 The South Atlantic Anomaly (SAA) is a region of weakened magnetic field over South America, posing risks to space technology. is a region of weakened magnetic field over South America, posing risks to space technology. 🛰️ Satellites passing through the SAA face exposure to high-energy particles, leading to potential single event upsets and system malfunctions. and system malfunctions. 🔄 The anomaly is dynamically changing , drifting northwest and splitting into two lobes, increasing hazards for spacecraft. , drifting northwest and splitting into two lobes, increasing hazards for spacecraft. 🔬 NASA uses satellite data and core simulations to model the magnetic field's evolution and improve mission planning. The South Atlantic Anomaly (SAA) has become a focal point of scientific intrigue and concern. This vast region of weakened magnetic field over South America and the South Atlantic Ocean presents a unique challenge for NASA and the global scientific community. Originating from complex processes within Earth's core, the SAA is not only a fascinating natural phenomenon but also a critical area of study due to its potential impact on space technologies. As the anomaly evolves, it becomes imperative to understand its mechanisms and anticipate the challenges it presents to our technological infrastructure. Deep Origins and Complex Mechanisms At the heart of NASA's concerns lies the South Atlantic Anomaly (SAA), a geomagnetic phenomenon both captivating and concerning. This immense region is characterized by a significant reduction in magnetic intensity compared to its surroundings. Far from being a mere scientific curiosity, this weakness acts as a breach in our natural protective shield, allowing high-energy solar particles to dangerously approach Earth's surface. The origins of the SAA are intricately linked to the geodynamo, a complex process occurring in Earth's outer core. Here, the movement of molten iron and nickel generates the magnetic field that envelops us. However, this generation is not uniform. Two primary factors contribute to the formation of the SAA: the tilt of Earth's magnetic axis relative to its rotational axis and the influence of a massive dense structure known as the African Large Low Shear Velocity Province, located about 1,800 miles beneath the African continent. These factors disrupt the magnetic field generation in this region, leading to a local polarity reversal within Earth's magnetic field, further weakening the dipole field intensity in this specific area. 'Nasa Confirms the Unthinkable': China's Giant Water Diversion Project Will Slow Earth's Rotation and Disrupt Global Timekeeping A Threat to Space Technology This magnetic vulnerability poses significant risks to space technology. Satellites traversing the SAA are exposed to high levels of energetic protons, which can cause single event upsets (SEUs). These incidents can lead to temporary malfunctions, data corruption, or even permanent damage if critical systems are affected. To mitigate these risks, many satellite operators take preventive measures, such as shutting down non-essential systems when passing through the anomaly. Even the International Space Station (ISS) crosses the SAA on each orbit. While its shielding effectively protects astronauts, external instruments remain more vulnerable. Bryan Blair, deputy principal investigator for the GEDI instrument on the ISS, reports occasional 'glitches' and resets, resulting in a few hours of data loss each month. Other missions, like the Ionospheric Connection Explorer (ICON), also closely monitor the SAA and adjust their operations accordingly. 'NASA Sounds the Alarm': Massive Planetary Anomaly Detected Spreading Worldwide, Traced to Unknown Forces Beneath Earth's Crust Dynamic Evolution and Challenges The South Atlantic Anomaly is far from static. Recent data, particularly from the ESA's Swarm constellation and historical measurements from NASA's SAMPEX mission, confirm several alarming trends. The anomaly is slowly drifting northwest, expanding in surface area, and, as observed since 2020, beginning to split into two distinct lobes, creating two centers of minimum magnetic intensity. This bifurcation increases the number of hazardous zones for spacecraft and complicates the task of scientists developing predictive models of geomagnetic conditions. Understanding the changing morphology of the SAA is crucial for the safety of current and future satellites. As Terry Sabaka of NASA emphasizes, these developments necessitate continuous monitoring and adaptation in satellite operations to mitigate potential disruptions. 'Space Needs Nuclear Now': This New Global Race to Harness Atomic Power Beyond Earth Is Accelerating Faster Than Expected Anticipating the Invisible To refine their understanding and predictions, NASA combines satellite data with simulations of Earth's core dynamics. These inputs feed global models like the International Geomagnetic Reference Field (IGRF), which track the evolution of Earth's magnetic field. These models are essential not only for planning space missions but also for gaining a better grasp of our planet's internal structure. The approach resembles weather forecasting but on much longer timescales, allowing scientists to estimate the secular variation—the slow yet persistent changes in the magnetic field over years and decades. While the current evolution of the SAA is unprecedented in the space era, geological records suggest that such anomalies are not exceptional over long timescales. It is important to note that, according to scientists, the current SAA is not an early indicator of a magnetic pole reversal, a natural but rare phenomenon occurring over hundreds of thousands of years. Thus, studying the SAA remains a vital research area, crucial for protecting our orbiting technologies and deepening our understanding of the profound forces driving our planet. As the South Atlantic Anomaly continues to evolve, the scientific community remains vigilant in its efforts to understand and mitigate its impact. With its potential to disrupt satellite operations and influence our understanding of Earth's magnetic field, the SAA poses intriguing questions about the future of our planet's magnetic dynamics. How will these changes shape our technological and scientific pursuits in the years to come? Our author used artificial intelligence to enhance this article. Did you like it? 4.5/5 (22)


Sustainability Times
13-06-2025
- Science
- Sustainability Times
'It's Growing': NASA Detects Massive Earth Anomaly Expanding Rapidly and Threatening the Entire Continental United States
IN A NUTSHELL 🌍 NASA has discovered an expanding magnetic field anomaly in the South Atlantic Ocean. has discovered an expanding magnetic field anomaly in the South Atlantic Ocean. 🚀 The South Atlantic Anomaly (SAA) poses risks to satellites and space missions due to increased radiation levels. poses risks to satellites and space missions due to increased radiation levels. 🔍 Scientists are investigating the origins of the SAA, possibly linked to Earth's core dynamics and the African Large Low Shear Velocity Province. ⚠️ The anomaly's growth may impact global technological systems, increasing vulnerability to solar storms and space weather events. The recent discoveries by NASA regarding the South Atlantic Anomaly (SAA) have captured the attention of scientists worldwide. This anomaly, located in the South Atlantic Ocean and parts of South America, is characterized by an expanding magnetic field disturbance. The SAA's growth and its implications for technology and space exploration make it a focal point of scientific research. As the anomaly continues to evolve, understanding its origins and effects becomes increasingly urgent for developing protective measures for both terrestrial and space-based technologies. The Scientific Community Reveals That an Unexplained Magnetic Disturbance Continues to Expand The South Atlantic Anomaly is an area of high radiation levels due to the proximity of Earth's inner Van Allen radiation belt to the surface in this region. This anomaly results in a weakened magnetic field, allowing more cosmic radiation to penetrate the atmosphere. The increased radiation levels pose significant risks to satellites and spacecraft transiting through this zone, potentially disrupting electronic devices and threatening the success of space missions. Understanding the SAA is crucial for developing strategies to protect space vehicles and astronaut safety during missions. Engineers and scientists are focused on comprehending this anomaly to design effective safeguarding strategies that mitigate its impact on space exploration. The SAA's unique characteristics make it a critical area of study for ensuring the continuity and success of technological operations both in space and on Earth. 'Sun Unleashes Fury': World's Strongest Solar Flare of 2025 Disrupts Radio Signals Across Five Continents in Minutes Researchers Observe This Fast-Growing Phenomenon as It Presents a Worldwide Risk for Technological Operations NASA's observations have shown that the South Atlantic Anomaly not only persists but is also expanding and shifting in position. The growing size of the SAA raises concerns about its potential effects on both space-based and terrestrial equipment. As the anomaly expands, it becomes an increasing threat to satellites, potentially causing severe issues for communication systems and power grids. The anomaly's growth is linked to the weakening of Earth's magnetic field, a phenomenon observed over centuries. This weakening necessitates increased research and monitoring to develop predictive models and mitigation strategies. As the SAA continues to grow, it is crucial to understand its underlying causes and prepare for its potential impact on global technological infrastructure. 'Nasa Sounds the Alarm': Massive Anomaly Spreads Across Earth, Scientists Trace It to Mysterious Forces Deep Beneath the Surface Scientists Uncover Shocking Theories on What's Causing the Anomaly To determine the origins of the SAA, scientists investigate the dynamics of Earth's core, where the planet's magnetic field is generated. The flow of molten iron and nickel in the outer core creates electric currents that contribute to magnetic field formation. Variations in these flows can lead to changes in the magnetic field's strength and structure, resulting in anomalies like the SAA. One theory suggests that the SAA is caused by an indentation in the magnetic field due to the African Large Low Shear Velocity Province, a massive rock formation beneath Africa. This formation affects the movement of molten materials in the outer core, leading to the observed magnetic field reduction in the SAA region. Continued research is essential to validate this theory and further understand the anomaly's fundamental mechanisms. Unbelievable Discovery: Titan's Rivers Defy Expectations by Ending in Deep Pits Instead of Expected Deltas, Shocking Scientists Worldwide What Happens Next? The Future Impact on Earth and Space Travel With the SAA's weakening magnetic field, Earth may become more susceptible to solar storms and other space weather events, which could disrupt power grids, navigation systems, and communication networks. It is essential to study and monitor the SAA to develop accurate prediction models and protective infrastructure protocols. NASA's findings regarding the SAA's growth highlight the ongoing transformation of Earth's magnetic field. Continuous investigation and surveillance of the anomaly are vital as it affects technological systems and space exploration. Understanding the SAA will guide the development of safety measures to protect technological equipment and advance our scientific understanding of Earth's magnetic field dynamics. How will future generations adapt to and manage the challenges posed by this mysterious and evolving phenomenon? Our author used artificial intelligence to enhance this article. Did you like it? 4.5/5 (23)


Gizmodo
11-06-2025
- Science
- Gizmodo
Solar Orbiter Captures First Clear Views of Sun's South Pole—and It's a Hot Mess
For more than 60 years, various spacecraft and telescopes have journeyed through space to stare at the Sun, capturing haunting images of the giant ball of hot gas at the heart of our solar system. Our view of the star is limited, however, by Earth's orbital plane, which allows us to observe the Sun's equator head-on while its polar regions remain in a frustrating blind spot. Solar Orbiter is now the first to image the poles from outside the ecliptic plane, offering a rare look at its chaotic magnetic field. On Wednesday, the European Space Agency (ESA) released the first clear images of the Sun's south pole, revealing that both north and south magnetic polarities are currently present on the same side. The new images will help scientists better understand the Sun's 11-year magnetic cycle and what governs its solar outbursts that sometimes result in geomagnetic storms on Earth. Solar Orbiter used momentum from its flyby of Venus on February 18 to push itself out of the ecliptic plane that contains Earth's orbit around the Sun. Around a month later, the spacecraft was able to view the star from an angle of 17 degrees below the solar equator, just enough to get a good view of the Sun's south pole for the first time. 'We didn't know what exactly to expect from these first observations – the Sun's poles are literally terra incognita,' Sami Solanki, who leads Solar Orbiter's Polarimetric and Helioseismic Imager instrument team from the Max Planck Institute for Solar System Research in Germany, said in a statement. The science team used three instruments aboard Solar Orbiter to capture images of the Sun between March 16 and 17. Each instrument observes the Sun in a different way; the Polarimetric and Helioseismic Imager (PHI) captures the Sun in visible light, the Extreme Ultraviolet Imager (EUI) images it in ultraviolet, and the Spectral Imaging of the Coronal Environment (SPICE) instrument detects light emitted by charged gas above the Sun's surface. By combining the viewing powers of all three instruments, scientists observed the Sun's south pole in turmoil. Normally, each polar region has its own magnetic field characteristics. As the Sun reaches a period of solar maximum during its 11-year cycle, its magnetic polarity flips, with the north and south magnetic poles reversing. During Solar Orbiter's observations of the Sun, the polarity from the north and the south poles are both present in the south pole. This marks a crucial time in understanding the Sun's activity. After the magnetic field flips, a single polarity slowly builds up in the Sun's poles and takes over. When the Sun reaches its solar minimum in about five to six years, the north and south poles will each have their own magnetic polarity. 'How exactly this build-up occurs is still not fully understood, so Solar Orbiter has reached high latitudes at just the right time to follow the whole process from its unique and advantageous perspective,' Solanki said. The scientists behind the mission used SPICE to measure how clumps of solar material move across the Sun's surface. Using the Doppler effect, which describes changes in frequency of light or sound as it moves away or toward the source, the team created a velocity map showing how the material's speed varies between the Sun's poles and equatorial region. With the help of Solar Orbiter, scientists will gain a better understanding of why solar wind travels faster at the poles than it does at the Sun's equator. Solar Orbiter is just getting started. The recent observations are the first set of images captured from the spacecraft's newly inclined orbit, but the spacecraft is gearing up for another Venus flyby on December 24, 2026, which will further tilt its orbit to 23 degrees below the equator to get an even better view of the Sun's poles. 'This is just the first step of Solar Orbiter's 'stairway to heaven': in the coming years, the spacecraft will climb further out of the ecliptic plane for ever better views of the Sun's polar regions,' Daniel Müller, ESA's Solar Orbiter project scientist, said in a statement. 'These data will transform our understanding of the Sun's magnetic field, the solar wind, and solar activity.'


Sustainability Times
29-05-2025
- General
- Sustainability Times
'NASA Sounds the Alarm': Massive Planetary Anomaly Detected Spreading Worldwide, Traced to Unknown Forces Beneath Earth's Crust
IN A NUTSHELL 🌍 The South Atlantic Anomaly (SAA) is a region of weakened magnetic field over South America, posing risks to space technology. is a region of weakened magnetic field over South America, posing risks to space technology. 🛰️ Satellites passing through the SAA face exposure to high-energy particles, leading to potential single event upsets and system malfunctions. and system malfunctions. 🔄 The anomaly is dynamically changing , drifting northwest and splitting into two lobes, increasing hazards for spacecraft. , drifting northwest and splitting into two lobes, increasing hazards for spacecraft. 🔬 NASA uses satellite data and core simulations to model the magnetic field's evolution and improve mission planning. The South Atlantic Anomaly (SAA) has emerged as a focal point of scientific intrigue and concern. This vast region of weakened magnetic field over South America and the South Atlantic Ocean presents a unique challenge for NASA and the global scientific community. Originating from complex processes within Earth's core, the SAA is not only a fascinating natural phenomenon but also a critical area of study due to its potential impact on space technologies. As the anomaly evolves, it becomes imperative to understand its mechanisms and anticipate the challenges it presents to our technological infrastructure. Deep Origins and Complex Mechanisms At the heart of NASA's concerns lies the South Atlantic Anomaly (SAA), a geomagnetic phenomenon both captivating and concerning. This immense region is characterized by a significant reduction in magnetic intensity compared to its surroundings. Far from being a mere scientific curiosity, this weakness acts as a breach in our natural protective shield, allowing high-energy solar particles to dangerously approach Earth's surface. The origins of the SAA are intricately linked to the geodynamo, a complex process occurring in Earth's outer core. Here, the movement of molten iron and nickel generates the magnetic field that envelops us. However, this generation is not uniform. Two primary factors contribute to the formation of the SAA: the tilt of Earth's magnetic axis relative to its rotational axis and the influence of a massive dense structure known as the African Large Low Shear Velocity Province, located about 1,800 miles beneath the African continent. These factors disrupt the magnetic field generation in this region, leading to a local polarity reversal within Earth's magnetic field, further weakening the dipole field intensity in this specific area. 'NASA Uncovers Moon's Hidden Secret': Sun's Solar Wind Revealed as Critical Source of Lunar Water in Stunning Discovery A Threat to Space Technology This magnetic vulnerability poses significant risks to space technology. Satellites traversing the SAA are exposed to high levels of energetic protons, which can cause single event upsets (SEUs). These incidents can lead to temporary malfunctions, data corruption, or even permanent damage if critical systems are affected. To mitigate these risks, many satellite operators take preventive measures, such as shutting down non-essential systems when passing through the anomaly. Even the International Space Station (ISS) crosses the SAA on each orbit. While its shielding effectively protects astronauts, external instruments remain more vulnerable. Bryan Blair, deputy principal investigator for the GEDI instrument on the ISS, reports occasional 'glitches' and resets, resulting in a few hours of data loss each month. Other missions, like the Ionospheric Connection Explorer (ICON), also closely monitor the SAA and adjust their operations accordingly. 'Nasa Sounds the Alarm': Massive Anomaly Spreads Across Earth, Scientists Trace It to Mysterious Forces Deep Beneath the Surface Dynamic Evolution and Challenges The South Atlantic Anomaly is far from static. Recent data, particularly from the ESA's Swarm constellation and historical measurements from NASA's SAMPEX mission, confirm several alarming trends. The anomaly is slowly drifting northwest, expanding in surface area, and, as observed since 2020, beginning to split into two distinct lobes, creating two centers of minimum magnetic intensity. This bifurcation increases the number of hazardous zones for spacecraft and complicates the task of scientists developing predictive models of geomagnetic conditions. Understanding the changing morphology of the SAA is crucial for the safety of current and future satellites. As Terry Sabaka of NASA emphasizes, these developments necessitate continuous monitoring and adaptation in satellite operations to mitigate potential disruptions. 'NASA Says We're on the Brink': Alarming New Report Reveals Imminent Emergency Crash Risk for the Entire Space Station Anticipating the Invisible To refine their understanding and predictions, NASA combines satellite data with simulations of Earth's core dynamics. These inputs feed global models like the International Geomagnetic Reference Field (IGRF), which track the evolution of Earth's magnetic field. These models are essential not only for planning space missions but also for gaining a better grasp of our planet's internal structure. The approach resembles weather forecasting but on much longer timescales, allowing scientists to estimate the secular variation—the slow yet persistent changes in the magnetic field over years and decades. While the current evolution of the SAA is unprecedented in the space era, geological records suggest that such anomalies are not exceptional over long timescales. It is important to note that, according to scientists, the current SAA is not an early indicator of a magnetic pole reversal, a natural but rare phenomenon occurring over hundreds of thousands of years. Thus, studying the SAA remains a vital research area, crucial for protecting our orbiting technologies and deepening our understanding of the profound forces driving our planet. As the South Atlantic Anomaly continues to evolve, the scientific community remains vigilant in its efforts to understand and mitigate its impact. With its potential to disrupt satellite operations and influence our understanding of Earth's magnetic field, the SAA poses intriguing questions about the future of our planet's magnetic dynamics. How will these changes shape our technological and scientific pursuits in the years to come? Our author used artificial intelligence to enhance this article. Did you like it? 4.4/5 (21)