logo
#

Latest news with #Zhukov

How scientists created an ‘artificial' total solar eclipse to unlock the Sun's secrets
How scientists created an ‘artificial' total solar eclipse to unlock the Sun's secrets

Indian Express

time21 hours ago

  • Science
  • Indian Express

How scientists created an ‘artificial' total solar eclipse to unlock the Sun's secrets

The sun's corona (or outer atmosphere) has proved a difficult subject for solar scientists on Earth to study, appearing only in a total solar eclipse. This phenomenon, occurring once in around 18 months, was their only opportunity to observe parts of the corona. However, with Proba-3's recent mission, research can advance at a much quicker pace. The European Space Agency (ESA) on June 16, announced that the Proba-3 mission had created an 'artificial total solar eclipse' in orbit. This was achieved as the mission's two spacecraft – the Coronagraph and the Occulter – flew in formation 150 metres apart, and aligned so that the Occulter's disc covered the sun's disc, casting a shadow onto the Coronagraph's optical instrument. 'I was absolutely thrilled to see the images, especially since we got them on the first try,' Andrei Zhukov, principal investigator for ASPIICS at the Royal Observatory of Belgium, said in a statement. The mission was launched in December 2024. It involved sending both satellites into the solar orbit. In March this year, both spacecraft flew 150 metres apart, in formation up to to a millimetre's precision, without control from the Earth for several hours. When creating the artificial solar eclipse, the satellites aligned in formation based on the position of the Sun. Then, Occulter's 1.4-metre large disc would be used to block the sun's disc. This would cast a shadow of approximately 8 centimetre, across the Coronagraph's optical instruments, positioned behind the Occulter. Thanks to the precision, these instruments were able to provide the images of the corona. 'Our 'artificial eclipse' images are comparable with those taken during a natural eclipse. The difference is that we can create our eclipse once every 19.6-hour orbit, while total solar eclipses only occur naturally around once, very rarely twice a year. On top of that, natural total eclipses only last a few minutes, while Proba-3 can hold its artificial eclipse for up to 6 hours,' Zhukov explained. This mission could prove crucial for solar scientists, with previously unseen angles of the elusive corona becoming available for study. One benefit could be the study of solar wind, described by the ESA as 'the continuous flow of matter from the Sun into outer space.' Driven by the corona, these winds usually consist of charged particles, and constantly rain down upon the Earth as well. However, this can be interrupted by coronal mass ejections (CMEs), or solar storms. This subsequently affects space weather, which in turn can affect Earth's power grids, communication systems, and satellite operations. With the data from the Proba-3 mission and any subsequent missions focused on corona imaging, solar scientists can be better prepared for the potential threat of a severe solar storm – which NASA describes as 'a sudden explosion of particles, energy, magnetic fields, and material blasted into the solar system by the Sun'. Another question that Proba-3 would be able to solve is how the corona, which extends millions of miles across space, but still reaches temperatures above a million degrees Celsius, burns much hotter than the surface. To understand the reasoning, Proba-3 is attempting to study the corona at a minimal distance from the sun's surface. Due to the quality of the equipment, fewer stray rays would hit the detector, more details would be captured, and fainter features would be detected as compared to a traditional coronagraph. 'Current coronagraphs are no match for Proba-3, which will observe the Sun's corona down almost to the edge of the solar surface. So far, this was only possible during natural solar eclipses,' Jorge Amaya, Space Weather Modelling Coordinator at ESA, said in the ESA release. Alongside the key data provided by Proba-3, its precision flying in formation also paved the way for future missions, such as the ESA's Laser Interferometer Space Antenna (LISA), scheduled to launch in 2035. This mission will contain three identical spacecraft, arranged in an equilateral triangle formation, trailing behind the Earth in its orbit around the Sun. The mission is scheduled to last two years, aiming to capture images of the corona for further study, and then re-enter the Earth's atmosphere five years post-launch, as per the ESA. (This article has been curated by Purv Ashar, who is an intern with The Indian Express)

Artificial solar eclipses created by two European satellites
Artificial solar eclipses created by two European satellites

1News

time3 days ago

  • Science
  • 1News

Artificial solar eclipses created by two European satellites

A pair of European satellites have created the first artificial solar eclipses by flying in precise and fancy formation, providing hours of on-demand totality for scientists. The European Space Agency released the eclipse pictures at the Paris Air Show yesterday. Launched late last year, the orbiting duo have churned out simulated solar eclipses since March while zooming tens of thousands of kilometres above Earth. Flying 150 metres apart, one satellite blocks the sun like the moon does during a natural total solar eclipse as the other aims its telescope at the corona, the sun's outer atmosphere that forms a crown or halo of light. It's an intricate, prolonged dance requiring extreme precision by the cube-shaped spacecraft, less than 1.5 metres in size. Their flying accuracy needs to be within a mere millimeter, the thickness of a fingernail. This meticulous positioning is achieved autonomously through GPS navigation, star trackers, lasers and radio links. Dubbed Proba-3, the US$210 million (NZ$346.03 million) mission has generated 10 successful solar eclipses so far during the ongoing checkout phase. The longest eclipse lasted five hours, said the Royal Observatory of Belgium's Andrei Zhukov, the lead scientist for the orbiting corona-observing telescope. He and his team are aiming for a wondrous six hours of totality per eclipse once scientific observations begin in July. ADVERTISEMENT Scientists already are thrilled by the preliminary results that show the corona without the need for any special image processing, said Zhukov. "We almost couldn't believe our eyes,' Zhukov said in an email. 'This was the first try, and it worked. It was so incredible.' Two spacecraft of the Proba-3 mission aligning to create an eclipse to capture a coronagraph in space. (Source: Associated Press) Zhukov anticipates an average of two solar eclipses per week being produced for a total of nearly 200 during the two-year mission, yielding more than 1000 hours of totality. That will be a scientific bonanza since full solar eclipses produce just a few minutes of totality when the moon lines up perfectly between Earth and the sun — on average just once every 18 months. The sun continues to mystify scientists, especially its corona, which is hotter than the solar surface. Coronal mass ejections result in billions of tons of plasma and magnetic fields being hurled out into space. Geomagnetic storms can result, disrupting power and communication while lighting up the night sky with auroras in unexpected locales. While previous satellites have generated imitation solar eclipses — including the European Space Agency and NASA's Solar Orbiter and Soho observatory — the sun-blocking disk was always on the same spacecraft as the corona-observing telescope. What makes this mission unique, Zhukov said, is that the sun-shrouding disk and telescope are on two different satellites and therefore far apart. The distance between these two satellites will give scientists a better look at the part of the corona closest to the limb of the sun. ADVERTISEMENT "We are extremely satisfied by the quality of these images, and again this is really thanks to formation flying' with unprecedented accuracy, ESA's mission manager Damien Galano said from the Paris Air Show.

A look at first artificial solar eclipses created by two European satellites
A look at first artificial solar eclipses created by two European satellites

Nahar Net

time3 days ago

  • Science
  • Nahar Net

A look at first artificial solar eclipses created by two European satellites

by Naharnet Newsdesk 17 June 2025, 17:11 A pair of European satellites have created the first artificial solar eclipses by flying in precise and fancy formation, providing hours of on-demand totality for scientists. The European Space Agency released the eclipse pictures at the Paris Air Show on Monday. Launched late last year, the orbiting duo have churned out simulated solar eclipses since March while zooming tens of thousands of miles (kilometers) above Earth. Flying 492 feet (150 meters) apart, one satellite blocks the sun like the moon does during a natural total solar eclipse as the other aims its telescope at the corona, the sun's outer atmosphere that forms a crown or halo of light. It's an intricate, prolonged dance requiring extreme precision by the cube-shaped spacecraft, less than 5 feet (1.5 meters) in size. Their flying accuracy needs to be within a mere millimeter, the thickness of a fingernail. This meticulous positioning is achieved autonomously through GPS navigation, star trackers, lasers and radio links. Dubbed Proba-3, the $210 million mission has generated 10 successful solar eclipses so far during the ongoing checkout phase. The longest eclipse lasted five hours, said the Royal Observatory of Belgium's Andrei Zhukov, the lead scientist for the orbiting corona-observing telescope. He and his team are aiming for a wondrous six hours of totality per eclipse once scientific observations begin in July. Scientists already are thrilled by the preliminary results that show the corona without the need for any special image processing, said Zhukov. "We almost couldn't believe our eyes," Zhukov said in an email. "This was the first try, and it worked. It was so incredible." Zhukov anticipates an average of two solar eclipses per week being produced for a total of nearly 200 during the two-year mission, yielding more than 1,000 hours of totality. That will be a scientific bonanza since full solar eclipses produce just a few minutes of totality when the moon lines up perfectly between Earth and the sun — on average just once every 18 months. The sun continues to mystify scientists, especially its corona, which is hotter than the solar surface. Coronal mass ejections result in billions of tons of plasma and magnetic fields being hurled out into space. Geomagnetic storms can result, disrupting power and communication while lighting up the night sky with auroras in unexpected locales. While previous satellites have generated imitation solar eclipses — including the European Space Agency and NASA's Solar Orbiter and Soho observatory — the sun-blocking disk was always on the same spacecraft as the corona-observing telescope. What makes this mission unique, Zhukov said, is that the sun-shrouding disk and telescope are on two different satellites and therefore far apart. The distance between these two satellites will give scientists a better look at the part of the corona closest to the limb of the sun. "We are extremely satisfied by the quality of these images, and again this is really thanks to formation flying" with unprecedented accuracy, ESA's mission manager Damien Galano said from the Paris Air Show.

European Satellites Create First Artificial Solar Eclipse
European Satellites Create First Artificial Solar Eclipse

NDTV

time3 days ago

  • Science
  • NDTV

European Satellites Create First Artificial Solar Eclipse

Cape Canaveral: A pair of European satellites have created the first artificial solar eclipses by flying in precise and fancy formation, providing hours of on-demand totality for scientists. The European Space Agency released the eclipse pictures at the Paris Air Show on Monday. Launched late last year, the orbiting duo have churned out simulated solar eclipses since March while zooming tens of thousands of miles (kilometers) above Earth. Flying 492 feet (150 meters) apart, one satellite blocks the sun like the moon does during a natural total solar eclipse as the other aims its telescope at the corona, the sun's outer atmosphere that forms a crown or halo of light. It's an intricate, prolonged dance requiring extreme precision by the cube-shaped spacecraft, less than 5 feet (1.5 meters) in size. Their flying accuracy needs to be within a mere millimeter, the thickness of a fingernail. This meticulous positioning is achieved autonomously through GPS navigation, star trackers, lasers and radio links. Dubbed Proba-3, the $210 million mission has generated 10 successful solar eclipses so far during the ongoing checkout phase. The longest eclipse lasted five hours, said the Royal Observatory of Belgium's Andrei Zhukov, the lead scientist for the orbiting corona-observing telescope. He and his team are aiming for a wondrous six hours of totality per eclipse once scientific observations begin in July. Scientists already are thrilled by the preliminary results that show the corona without the need for any special image processing, said Zhukov. "We almost couldn't believe our eyes," Zhukov said in an email. "This was the first try, and it worked. It was so incredible." Zhukov anticipates an average of two solar eclipses per week being produced for a total of nearly 200 during the two-year mission, yielding more than 1,000 hours of totality. That will be a scientific bonanza since full solar eclipses produce just a few minutes of totality when the moon lines up perfectly between Earth and the sun - on average just once every 18 months. The sun continues to mystify scientists, especially its corona, which is hotter than the solar surface. Coronal mass ejections result in billions of tons of plasma and magnetic fields being hurled out into space. Geomagnetic storms can result, disrupting power and communication while lighting up the night sky with auroras in unexpected locales. While previous satellites have generated imitation solar eclipses - including the European Space Agency and NASA's Solar Orbiter and Soho observatory - the sun-blocking disk was always on the same spacecraft as the corona-observing telescope. What makes this mission unique, Zhukov said, is that the sun-shrouding disk and telescope are on two different satellites and therefore far apart. The distance between these two satellites will give scientists a better look at the part of the corona closest to the limb of the sun. "We are extremely satisfied by the quality of these images, and again this is really thanks to formation flying" with unprecedented accuracy, ESA's mission manager Damien Galano said from the Paris Air Show.

How 2 European satellites created the first artificial solar eclipse
How 2 European satellites created the first artificial solar eclipse

First Post

time3 days ago

  • Science
  • First Post

How 2 European satellites created the first artificial solar eclipse

A pair of European satellites, named Occulter and Coronagraph, have created an artificial total solar eclipse in space by flying in a precise formation. This mission, titled Proba-3, will provide scientists with information to better understand the sun and its corona read more This image provided by the European Space Agency shows the Sun's corona captured by the Proba-3 pair of spacecraft, in the visible light spectrum, with the hair-like structures revealed using a specialised image processing algorithm. AP Solar eclipses are rare astronomical marvels. But it seems that won't be the case anymore. Two European satellites created an artificial total solar eclipse in space by flying in precise and fancy formation, providing hours of on-demand totality for scientists. Wait what! The European Space Agency (ESA) released the eclipse pictures at the Paris Air Show on Monday (June 16). All about the 'artificial total solar eclipse' But how was it made possible? Flying 492 feet (150 metres) apart, one satellite blocked the sun like the moon does during a natural total solar eclipse as the other aimed its telescope at the corona, the sun's outer atmosphere that forms a crown or halo of light. In this experiment, one of the satellites, called the Occulter, carried a 1.4-metre-wide carbon fibre and plastic disc, which blocked out the sun's light for the second satellite, the Coronagraph, which was equipped with a camera and scientific instruments. STORY CONTINUES BELOW THIS AD According to Associated Press, it was an intricate, prolonged dance requiring extreme precision by the cube-shaped spacecraft, less than five feet (1.5 meters) in size. The flying accuracy needed to be within a mere millimetre, the thickness of a fingernail. This $210 million mission, dubbed Proba 3, has generated 10 successful solar eclipses so far during the ongoing checkout phase. The longest eclipse lasted five hours, said the Royal Observatory of Belgium's Andrei Zhukov, the lead scientist for the orbiting corona-observing telescope. He and his team are aiming for a wondrous six hours of totality per eclipse once scientific observations begin in July. This image provided by the European Space Agency depicts the two spacecraft of the Proba-3 mission aligning to create an eclipse to capture a coronagraph in space. AP Why this is significant For scientists, this is a thrilling result. Zhukov said, 'We almost couldn't believe our eyes. This was the first try, and it worked. It was so incredible.' He added that what makes this experiment even more significant is that in past attempts the sun-blocking disc was always on the same spacecraft as the corona-observing telescope. However, this time the sun-shrouding disk and telescope are on two different satellites and therefore far apart. This will allow scientists a better look at the part of the corona closest to the limb of the sun. Now, Zhukov anticipates an average of two solar eclipses per week being produced for a total of nearly 200 during the two-year mission, yielding more than 1,000 hours of totality. That will be a scientific bonanza since full solar eclipses produce just a few minutes of totality when the moon lines up perfectly between Earth and the sun — on average just once every 18 months. STORY CONTINUES BELOW THIS AD The sun continues to mystify scientists, especially its corona, which is hotter than the solar surface. Coronal mass ejections result in billions of tonnes of plasma and magnetic fields being hurled out into space. Geomagnetic storms can result, disrupting power and communication while lighting up the night sky with auroras in unexpected locales. Damien Galano at ESA was quoted as telling New Scientist, 'These images will improve our understanding of the sun's corona physics as well as help us to better understand the solar wind and coronal mass ejections, which affect space weather.' With inputs from Associated Press

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store