
Astronauts Aisha Bowe and Amanda Nguyen reflect on life-changing Blue Origin spaceflight
Former NASA rocket scientist
Aisha Bowe
described seeing Earth without borders or boundaries during her recent journey aboard
Blue Origin's spacecraft
, calling the view from 62 miles up "just beautiful" and transformative.
"When you look out the window, you don't see any borders, you don't see any boundaries. You just see beauty," Bowe said during a post-flight interview Tuesday. "It's stunning, and it also has like a feel to it, like it's almost like you can feel the living life force and it was just so beautiful. It's impossible to go through this and not come out changed."
Bowe joined
"CBS Mornings" co-host Gayle King
, pop superstar
Katy Perry
, civil rights activist Amanda Nguyen, film producer Kerianne Flynn, and journalist and philanthropist Lauren Sánchez—who is also the fiancée of Blue Origin founder Jeff Bezos—on the company's historic all-women spaceflight.
Bowe, an aerospace engineer and entrepreneur who became the first person of Bahamian heritage to travel to space, described conducting research during the flight, where she said she was looking at the future of being able to produce crops that can withstand harsh environments.
The flight appeared to inspire future generations as well. Bowe shared a story about a 6-year-old girl named Sophia who witnessed the launch and afterward declared to Bowe that she wants to go to space and help protect Earth.
"That," Bowe concluded, "is why we're here."
Amanda Nguyen
, a rape survivor who transformed personal trauma into landmark legislation when she drafted the Sexual Assault Survivor Bill of Rights, carried a decade-old handwritten note reading "Never never never give up" aboard the Blue Origin capsule.
Nguyen, who became the first Vietnamese and Southeast Asian woman in space during the flight, explained that she wrote the note to herself after undergoing a rape kit procedure at a hospital.
"It's a piece of paper that I taped to look at as I was determined to graduate Harvard, it was the same piece of paper that I looked at when I was fighting for my rights in Congress and the United Nations, and it was the same piece of paper that I held on to and looked at over Earth," she said.
She said the moment above Earth marked her "full circle healing journey" after postponing her astronaut dreams to fight for survivors of sexual violence.
"To me, that moment was my full circle healing journey, one that I hope any survivor, or just anyone whose ever had a dream deferred, can know that you will heal, you will make it through, and your miracle is just around the corner," Nguyen told "CBS Mornings."
The civil rights activist, whose call sign during the mission was "Astronaut Dragon," chose "justice" as her personal theme for the journey. Following her own sexual assault, Nguyen fought against the practice of destroying rape kits and successfully advocated for the Sexual Assault Survivor Bill of Rights, which was signed into federal law in 2016 and has inspired similar legislation in states across the country.
"Justice to me comes in different forms, and for my personal journey, justice was about going to space," Nguyen said. "For a decade, I gave up my astronaut dreams in order to fight for the rights of gender-based violence survivors."
Nguyen's family history added particular significance to her journey. Her parents were boat refugees from Vietnam.
"They swam so I can fly, crossed the ocean so I can touch the sky," Nguyen said, adding that her aunt, also a boat refugee, was the first person she hugged after touchdown. "She came on boats, and now we're on spaceships."
Beyond the personal milestone, Nguyen conducted scientific research during her brief time in microgravity. "One of the greatest joys that I have from this whole experience is being able to operate my science missions in microgravity and I'm just so so excited about how this research can help women's health in the future," she said.
Following the flight, Nguyen plans to show her flight suit to girls in Vietnam.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


CNN
2 hours ago
- CNN
Thousands of asteroids and millions of galaxies shine in first images from the largest camera ever built
The first test images from a groundbreaking observatory named for trailblazing astronomer Vera Rubin have captured the light from millions of distant stars and galaxies on an unprecedented scale — and are expected to reveal thousands of previously unseen asteroids. While the National Science Foundation has so far released only a couple of images and a brief video clip of the Vera C. Rubin Observatory's first imagery, more images and videos taken using the largest camera ever built are expected to be shared at 11:30 a.m. ET Monday on the agency's YouTube channel. The facility is jointly funded by the National Science Foundation and the Department of Energy's Office of Science. The new images represent just over 10 hours of test observations, offering a brief preview of the observatory's decade-long mission to explore the mysteries of the universe like never before. 'NSF-DOE Rubin Observatory will capture more information about our universe than all optical telescopes throughout history combined,' said National Science Foundation Chief of Staff Brian Stone, who is currently performing the duties of the NSF director (as the position is currently vacant). Among the observatory's initial accomplishments was the discovery of 2,104 asteroids, including seven near-Earth asteroids, that have never been seen before in our solar system. None of the newly found near-Earth asteroids pose a risk to our planet, according to scientists at the observatory. Imagery of the asteroids is expected to be shared later Monday. While ground- and space-based telescopes spot about 20,000 asteroids each year, Rubin Observatory is expected to uncover millions of the space rocks within its first two years, according to the National Science Foundation. The telescope is also considered the most effective way to spot any interstellar comets or asteroids that may travel through our solar system. The observatory's mirror design, sensitive camera and telescope speed are all the first of its kind, enabling Rubin to spot tiny, faint objects such as asteroids. The observatory will also constantly take thousands of images every night, cataloging changes in brightness to reveal otherwise hidden space rocks like near-Earth asteroids that could be on a collision course with our planet, according to the foundation. A sneak peek shared Monday includes a video made from over 1,100 images captured by the observatory that begins with a detailed look at two galaxies. The video then zooms out to showcase about 10 million galaxies spotted by the camera's wide view — roughly 0.05% of the 20 billion galaxies Rubin will observe over 10 years. The observatory team also released a mosaic of the Trifid and Lagoon nebulae, which are star-forming regions that resemble clouds located in the Sagittarius constellation. The mosaic, made up of 678 separate images taken over just seven hours, captured faint and previously invisible details such as clouds of gas and dust in the nebulae, which are several thousand light-years away from Earth. The initial images were selected to showcase the telescope's enormous field of view, which enables detailed glimpses of interacting galaxies as well as broad views of millions of galaxies, said Dr. Yusra AlSayyad, deputy associate director of the data management subsystem for the Rubin Observatory. 'It has such a wide field of view and such a rapid cadence that you do have that movielike aspect to the night sky,' said Dr. Sandrine Thomas, telescope project scientist for the Rubin Observatory. The observatory, located in the Andes on the top of Cerro Pachón in Chile, is nearly complete after about two decades of work. The facility is set to achieve 'first light,' or make the first scientific observations of the Southern Hemisphere's sky using its 8.4-meter (27.5-foot) Simonyi Survey Telescope, on July 4. The telescope's location in the Southern Hemisphere allows for a great view of the Milky Way's galactic center, said Edward Ajhar, Rubin Observatory's program officer. The region in central Chile has also been home to other ground-based observatories and is favored for astronomical observations because it affords dry air and dark skies. The observatory's main objective is the Legacy Survey of Space and Time, an ultrawide and ultra-high-definition movie of the universe made by scanning the entire sky every few nights over 10 years to capture a time-lapse compilation of whizzing asteroids and comets, exploding stars, and distant galaxies as they change. The survey is expected to begin between four to seven months after first light. '(Rubin) will enable us to explore galaxies, stars in the Milky Way, objects in the solar system, and all in a truly new way. Since we take images of the night sky so quickly and so often, (it) will detect millions of changing objects literally every night,' said Dr. Aaron Roodman, professor of particle physics and astrophysics at Stanford University's SLAC National Accelerator Laboratory in California. Roodman was responsible for the assembly and testing of Rubin Observatory's camera. Rubin's capabilities to spot interesting phenomena will also enable it to be a 'discovery machine' that can identify interesting areas of focus for other telescopes, Roodman said. The observatory could also enable the detection of previously unknown types of celestial objects. The telescope's namesake, considered to be one of the most influential women astronomers, provided some of the first evidence that dark matter existed. In Rubin's honor, the telescope is expected to continue her pioneering work. 'Through this remarkable scientific facility, we will explore many cosmic mysteries, including the dark matter and dark energy that permeate the universe,' Stone said. Dark matter is an enigmatic substance that shapes the cosmos, while dark energy is a force that accelerates the expansion rate of the universe, according to NASA. Though they are thought to make up most of the cosmos, both are impossible to directly observe but can be detected due to their gravitational effects. 'Rubin has enormous potential to help us learn what dark energy really is and how the universe's expansion is accelerating here, too,' Roodman said. 'Rubin's unique ability to see billions of galaxies and to image them repeatedly over 10 years will literally enable us to see the universe in a new way.'


CNN
2 hours ago
- CNN
Thousands of asteroids and millions of galaxies shine in first images from the largest camera ever built
The first test images from a groundbreaking observatory named for trailblazing astronomer Vera Rubin have captured the light from millions of distant stars and galaxies on an unprecedented scale — and are expected to reveal thousands of previously unseen asteroids. While the National Science Foundation has so far released only a couple of images and a brief video clip of the Vera C. Rubin Observatory's first imagery, more images and videos taken using the largest camera ever built are expected to be shared at 11:30 a.m. ET Monday on the agency's YouTube channel. The facility is jointly funded by the National Science Foundation and the Department of Energy's Office of Science. The new images represent just over 10 hours of test observations, offering a brief preview of the observatory's decade-long mission to explore the mysteries of the universe like never before. 'NSF-DOE Rubin Observatory will capture more information about our universe than all optical telescopes throughout history combined,' said National Science Foundation Chief of Staff Brian Stone, who is currently performing the duties of the NSF director (as the position is currently vacant). Among the observatory's initial accomplishments was the discovery of 2,104 asteroids, including seven near-Earth asteroids, that have never been seen before in our solar system. None of the newly found near-Earth asteroids pose a risk to our planet, according to scientists at the observatory. Imagery of the asteroids is expected to be shared later Monday. While ground- and space-based telescopes spot about 20,000 asteroids each year, Rubin Observatory is expected to uncover millions of the space rocks within its first two years, according to the National Science Foundation. The telescope is also considered the most effective way to spot any interstellar comets or asteroids that may travel through our solar system. The observatory's mirror design, sensitive camera and telescope speed are all the first of its kind, enabling Rubin to spot tiny, faint objects such as asteroids. The observatory will also constantly take thousands of images every night, cataloging changes in brightness to reveal otherwise hidden space rocks like near-Earth asteroids that could be on a collision course with our planet, according to the foundation. A sneak peek shared Monday includes a video made from over 1,100 images captured by the observatory that begins with a detailed look at two galaxies. The video then zooms out to showcase about 10 million galaxies spotted by the camera's wide view — roughly 0.05% of the 20 billion galaxies Rubin will observe over 10 years. The observatory team also released a mosaic of the Trifid and Lagoon nebulae, which are star-forming regions that resemble clouds located in the Sagittarius constellation. The mosaic, made up of 678 separate images taken over just seven hours, captured faint and previously invisible details such as clouds of gas and dust in the nebulae, which are several thousand light-years away from Earth. The initial images were selected to showcase the telescope's enormous field of view, which enables detailed glimpses of interacting galaxies as well as broad views of millions of galaxies, said Dr. Yusra AlSayyad, deputy associate director of the data management subsystem for the Rubin Observatory. 'It has such a wide field of view and such a rapid cadence that you do have that movielike aspect to the night sky,' said Dr. Sandrine Thomas, telescope project scientist for the Rubin Observatory. The observatory, located in the Andes on the top of Cerro Pachón in Chile, is nearly complete after about two decades of work. The facility is set to achieve 'first light,' or make the first scientific observations of the Southern Hemisphere's sky using its 8.4-meter (27.5-foot) Simonyi Survey Telescope, on July 4. The telescope's location in the Southern Hemisphere allows for a great view of the Milky Way's galactic center, said Edward Ajhar, Rubin Observatory's program officer. The region in central Chile has also been home to other ground-based observatories and is favored for astronomical observations because it affords dry air and dark skies. The observatory's main objective is the Legacy Survey of Space and Time, an ultrawide and ultra-high-definition movie of the universe made by scanning the entire sky every few nights over 10 years to capture a time-lapse compilation of whizzing asteroids and comets, exploding stars, and distant galaxies as they change. The survey is expected to begin between four to seven months after first light. '(Rubin) will enable us to explore galaxies, stars in the Milky Way, objects in the solar system, and all in a truly new way. Since we take images of the night sky so quickly and so often, (it) will detect millions of changing objects literally every night,' said Dr. Aaron Roodman, professor of particle physics and astrophysics at Stanford University's SLAC National Accelerator Laboratory in California. Roodman was responsible for the assembly and testing of Rubin Observatory's camera. Rubin's capabilities to spot interesting phenomena will also enable it to be a 'discovery machine' that can identify interesting areas of focus for other telescopes, Roodman said. The observatory could also enable the detection of previously unknown types of celestial objects. The telescope's namesake, considered to be one of the most influential women astronomers, provided some of the first evidence that dark matter existed. In Rubin's honor, the telescope is expected to continue her pioneering work. 'Through this remarkable scientific facility, we will explore many cosmic mysteries, including the dark matter and dark energy that permeate the universe,' Stone said. Dark matter is an enigmatic substance that shapes the cosmos, while dark energy is a force that accelerates the expansion rate of the universe, according to NASA. Though they are thought to make up most of the cosmos, both are impossible to directly observe but can be detected due to their gravitational effects. 'Rubin has enormous potential to help us learn what dark energy really is and how the universe's expansion is accelerating here, too,' Roodman said. 'Rubin's unique ability to see billions of galaxies and to image them repeatedly over 10 years will literally enable us to see the universe in a new way.'


CNN
2 hours ago
- CNN
Thousands of asteroids and millions of galaxies shine in first images from the largest camera ever built
The first test images from a groundbreaking observatory named for trailblazing astronomer Vera Rubin have captured the light from millions of distant stars and galaxies on an unprecedented scale — and are expected to reveal thousands of previously unseen asteroids. While the National Science Foundation has so far released only a couple of images and a brief video clip of the Vera C. Rubin Observatory's first imagery, more images and videos taken using the largest camera ever built are expected to be shared at 11:30 a.m. ET Monday on the agency's YouTube channel. The facility is jointly funded by the National Science Foundation and the Department of Energy's Office of Science. The new images represent just over 10 hours of test observations, offering a brief preview of the observatory's decade-long mission to explore the mysteries of the universe like never before. 'NSF-DOE Rubin Observatory will capture more information about our universe than all optical telescopes throughout history combined,' said National Science Foundation Chief of Staff Brian Stone, who is currently performing the duties of the NSF director (as the position is currently vacant). Among the observatory's initial accomplishments was the discovery of 2,104 asteroids, including seven near-Earth asteroids, that have never been seen before in our solar system. None of the newly found near-Earth asteroids pose a risk to our planet, according to scientists at the observatory. Imagery of the asteroids is expected to be shared later Monday. While ground- and space-based telescopes spot about 20,000 asteroids each year, Rubin Observatory is expected to uncover millions of the space rocks within its first two years, according to the National Science Foundation. The telescope is also considered the most effective way to spot any interstellar comets or asteroids that may travel through our solar system. The observatory's mirror design, sensitive camera and telescope speed are all the first of its kind, enabling Rubin to spot tiny, faint objects such as asteroids. The observatory will also constantly take thousands of images every night, cataloging changes in brightness to reveal otherwise hidden space rocks like near-Earth asteroids that could be on a collision course with our planet, according to the foundation. A sneak peek shared Monday includes a video made from over 1,100 images captured by the observatory that begins with a detailed look at two galaxies. The video then zooms out to showcase about 10 million galaxies spotted by the camera's wide view — roughly 0.05% of the 20 billion galaxies Rubin will observe over 10 years. The observatory team also released a mosaic of the Trifid and Lagoon nebulae, which are star-forming regions that resemble clouds located in the Sagittarius constellation. The mosaic, made up of 678 separate images taken over just seven hours, captured faint and previously invisible details such as clouds of gas and dust in the nebulae, which are several thousand light-years away from Earth. The initial images were selected to showcase the telescope's enormous field of view, which enables detailed glimpses of interacting galaxies as well as broad views of millions of galaxies, said Dr. Yusra AlSayyad, deputy associate director of the data management subsystem for the Rubin Observatory. 'It has such a wide field of view and such a rapid cadence that you do have that movielike aspect to the night sky,' said Dr. Sandrine Thomas, telescope project scientist for the Rubin Observatory. The observatory, located in the Andes on the top of Cerro Pachón in Chile, is nearly complete after about two decades of work. The facility is set to achieve 'first light,' or make the first scientific observations of the Southern Hemisphere's sky using its 8.4-meter (27.5-foot) Simonyi Survey Telescope, on July 4. The telescope's location in the Southern Hemisphere allows for a great view of the Milky Way's galactic center, said Edward Ajhar, Rubin Observatory's program officer. The region in central Chile has also been home to other ground-based observatories and is favored for astronomical observations because it affords dry air and dark skies. The observatory's main objective is the Legacy Survey of Space and Time, an ultrawide and ultra-high-definition movie of the universe made by scanning the entire sky every few nights over 10 years to capture a time-lapse compilation of whizzing asteroids and comets, exploding stars, and distant galaxies as they change. The survey is expected to begin between four to seven months after first light. '(Rubin) will enable us to explore galaxies, stars in the Milky Way, objects in the solar system, and all in a truly new way. Since we take images of the night sky so quickly and so often, (it) will detect millions of changing objects literally every night,' said Dr. Aaron Roodman, professor of particle physics and astrophysics at Stanford University's SLAC National Accelerator Laboratory in California. Roodman was responsible for the assembly and testing of Rubin Observatory's camera. Rubin's capabilities to spot interesting phenomena will also enable it to be a 'discovery machine' that can identify interesting areas of focus for other telescopes, Roodman said. The observatory could also enable the detection of previously unknown types of celestial objects. The telescope's namesake, considered to be one of the most influential women astronomers, provided some of the first evidence that dark matter existed. In Rubin's honor, the telescope is expected to continue her pioneering work. 'Through this remarkable scientific facility, we will explore many cosmic mysteries, including the dark matter and dark energy that permeate the universe,' Stone said. Dark matter is an enigmatic substance that shapes the cosmos, while dark energy is a force that accelerates the expansion rate of the universe, according to NASA. Though they are thought to make up most of the cosmos, both are impossible to directly observe but can be detected due to their gravitational effects. 'Rubin has enormous potential to help us learn what dark energy really is and how the universe's expansion is accelerating here, too,' Roodman said. 'Rubin's unique ability to see billions of galaxies and to image them repeatedly over 10 years will literally enable us to see the universe in a new way.'