logo
China's Mars rover makes stunning discovery in search for evidence of ancient water

China's Mars rover makes stunning discovery in search for evidence of ancient water

CNN28-02-2025

Mars may have once hosted an ocean with waves that lapped against sandy beaches 3.6 billion years ago, according to new research. China's Zhurong rover and its ground-penetrating radar detected the ancient shorelines when it operated from May 2021 to May 2022.
The rover landed in Utopia Planitia, a plain within the largest known impact basin on Mars, near a series of ridges in the planet's northern hemisphere. Scientists have long questioned whether the ridges might represent the remnants of a shoreline, so Zhurong set out in search of evidence of ancient water.
The study, based on data collected by Zhurong as its radar instrument peered beneath the surface to examine hidden rock layers, was published Monday in the journal Proceedings of the National Academy of Sciences.
'We're finding places on Mars that used to look like ancient beaches and ancient river deltas,' said study coauthor Benjamin Cardenas, assistant professor of geology in the department of geosciences at Penn State, in a statement. 'We found evidence for wind, waves, no shortage of sand — a proper, vacation-style beach.'
What's more, it's possible the Martian environment was warmer and wetter for tens of millions of years longer than previously suspected, the study authors wrote.
The revelations add to the increasing evidence that the red planet once had a warmer, wetter climate as well as an ocean that covered one-third of the Martian surface — conditions that might have created a hospitable environment for life.
The search for Mars' ancient ocean
In the 1970s, NASA's Mariner 9 and Viking 2 were the first missions to spy features that suggested the presence of an ancient ocean on Mars.
Utopia Planitia dates to the Hesperian Period, or 3.7 billion to 3 billion years ago, and it lacks abundant evidence for standing water, unlike more ancient regions of Mars, said Aaron Cavosie, a planetary scientist and senior lecturer at the Space Science and Technology Centre at Curtin University in Perth, Australia. Cavosie was not involved in the new study.
'The Mariner 9 orbiter first imaged giant canyons on Hesperian surfaces of Mars in the 1970s, but they are generally viewed as representing catastrophic bursts of groundwater to the surface, rather than evidence for standing water,' Cavosie said. 'The idea is that Mars' climate cooled down by this time and the surface dried up.'
Multiple spacecraft have captured observations that suggest much of Mars' water escaped to space as the planet's atmosphere disappeared — astronomers are still investigating what caused this dramatic transformation. As the planet cooled, some of the water likely moved underground in the form of ice or combined with rocks to create minerals.
Viking's images showcased what appeared to be a shoreline in the northern hemisphere. But in stark contrast to the level shorelines on Earth, the Martian feature was jaggedly irregular, with height differences of up to 6.2 miles (10 kilometers).
Study coauthor Michael Manga, a professor of Earth and planetary science at the University of California, Berkeley, and his colleagues previously suggested that volcanic activity in the region, as well as a change in Mars' rotation, altered the shoreline and caused it to be uneven over time.
'Because the spin axis of Mars has changed, the shape of Mars has changed. And so what used to be flat is no longer flat,' Manga said.
But what scientists needed most to answer their questions were observations made from 'boots on the ground,' or in this case, rover tracks, Cavosie said. Zhurong would be able to see whether the rock layers buried in Utopia Planitia were volcanic or if they contained sediments consistent with those of an ocean.
The dip of a shoreline
When Zhurong landed, it traveled along Utopia Planitia's ridges, collecting data up to 260 feet (80 meters) beneath the surface with radar.
Between 32.8 and 114.8 feet (10 and 35 meters) down, the rover's radar detected sedimentary structures similar to layered beaches on Earth that dipped at a 14.5-degree angle. The radar also measured the size of the particles, which matched that of sand grains.
'The structures don't look like sand dunes,' Manga said. 'They don't look like an impact crater. They don't look like lava flows. That's when we started thinking about oceans. The orientation of these features (is) parallel to what the old shoreline would have been.'
The structures strongly resembled coastal sediment deposits on Earth, such as those found in the Bay of Bengal, formed by the presence of a long-term stable ocean, the study authors said.
The team said it believes the rover found 'foreshore deposits,' which take millions of years to form as sediments carried by tides and waves slope downward toward an ocean.
'This stood out to us immediately because it suggests there were waves, which means there was a dynamic interface of air and water,' Cardenas said. 'When we look back at where the earliest life on Earth developed, it was in the interaction between oceans and land, so this is painting a picture of ancient habitable environments, capable of harboring conditions friendly toward microbial life.'
Rivers likely helped dump sediment into the oceans, which was then distributed by waves to create beaches. Sedimentary rocks, carved channels and even the remains of an ancient river delta, studied by NASA's Perseverance rover, have shown how water once shaped the Martian landscape.
After the ocean dried up, the beaches were likely blanketed by volcanic eruptions and material from dust storms, effectively preserving the shoreline, Cardenas said.
'It's always a challenge to know how the last 3.5 billion years of erosion on Mars might have altered or completely erased evidence of an ocean,' he said. 'But not with these deposits. This is a very unique dataset.'
Now, the team wants to determine the height of the waves and tides within the ocean, how long the ocean persisted, and whether it provided a potentially hospitable environment, Magna said.
François Forget, senior research scientist and research director at the French National Centre for Scientific Research, said he isn't entirely convinced by the hypothesis presented in the study that only ocean shorelines can explain the radar data. Forget was not involved in the new research.
'I do not think that we can be certain that the observations could not be explained by dune processes,' or the formation of sand dunes, which Forget said he believes to be more likely on Mars.
Meanwhile, Dr. Joe McNeil, a planetary scientist and postdoctoral researcher at London's Natural History Museum, believes the findings add weight to the hypothesis of an ancient northern ocean on Mars by providing crucial subsurface evidence. McNeil was not involved in the new study.
'If these coastal deposits truly represent deposition of sediments at the edge of an ancient ocean, it suggests a prolonged period of stable liquid water, which has major implications for Mars' climate history,' McNeil said. 'It would mean Mars had conditions that could have supported a hydrological system with potential habitable environments for substantial amounts of time.'

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Regional students participate in University of Idaho's coding and robotics camp
Regional students participate in University of Idaho's coding and robotics camp

Yahoo

time9 hours ago

  • Yahoo

Regional students participate in University of Idaho's coding and robotics camp

Jun. 21—MOSCOW — It may not be a summer camp in the traditional sense, but the University of Idaho's summer Robotics Coding Camp is helping local students learn skills that can help them in the future. Regional middle and high school students spent a week on the Moscow campus learning about computer programming and engineering. The students typed and clicked away at their computers mastering skills many people don't learn until they are older. Erin Lanigan, UI assistant director of student engagement and STEM outreach, said one of the goals for the program is to help prepare students for entering the workforce where computer science and engineering skills are among the top needs. At this age, they are beginning to decide what they want to do when they grow up. "They have to see it to know they can be it," she said. Moscow Middle School student Corinne Bowersox, 12, already has a job in mind. "I'm actually interested in being a NASA engineer," she said. During this week's camp, she used coding to create her own video game where the goal is to catch fortune cookies and eggs before they hit the floor. She also learned how to control a small robot on wheels. She said coding is an easy way to learn a new hobby and people can share their work with other creators.

ESA's Solar Orbiter Should Solve Mystery Of Sun's Outermost Atmosphere
ESA's Solar Orbiter Should Solve Mystery Of Sun's Outermost Atmosphere

Forbes

time10 hours ago

  • Forbes

ESA's Solar Orbiter Should Solve Mystery Of Sun's Outermost Atmosphere

ESA's Solar Orbiter mission will face the Sun from within the orbit of Mercury at its closest ... More approach. The European Space Agency's Solar Orbiter mission recently stunned the world with the first-ever full images of our Sun's South pole, proving that this was going to be a mission like no other. Using an orbital gravity assist from the planet Venus, the Solar Orbiter mission spacecraft was able to maneuver into an orbit that has taken it to an angle 17 degrees below the Sun's equator. Over the coming years, the spacecraft will tilt its orbit even further, so the best views are yet to come, says ESA. The 1.2-billion-euro Solar Orbiter mission, with NASA participation, should finally help us understand the origin of the Sun's solar winds as well as our understanding of the Sun's poles. And arguably most importantly, it should solve the puzzle of why our star's outermost atmosphere, or corona, is heated to millions of degrees Kelvin and is thus so much hotter than the Sun's own surface. By contrast, our Sun's visible photosphere, or surface, averages only 5,500 degrees K. With Solar Orbiter, we are clearly seeing energy releases on the nano-flare scale, Daniel Mueller, a solar physicist and ESA project scientist for both ESA's SOHO and Solar Orbiter missions to the Sun, tells me in his office in The Netherlands. But the question is, would these nano-flares continue like that infinitely, or is there a certain lower limit to the production of these nano-flares, Mueller wonders. The puzzle is whether these nano-flares are enough to heat up the Sun's corona to the temperatures with which it is routinely measured. A Unique View Launched in 2020, from its highly elliptical orbit just inside Mercury's perihelion, the closest point in our innermost planet's solar orbit, the ESA spacecraft offers the best views yet of our own yellow dwarf star. We can see on scales down to about 200 kilometers on the Sun, which shows us a lot of dynamics of our star, says Mueller. And thanks to its newly tilted orbit around the Sun, the European Space Agency-led Solar Orbiter spacecraft is the first to image the Sun's poles from outside the ecliptic plane (the imaginary geometric plane in which our Earth orbits the Sun), says ESA. We observed the Sun's North pole at the end of this past April, says Mueller. But we passed the Southern pole first and then the Northern pole six weeks later, he says. At the moment, as seen from Earth, the Solar Orbiter is almost behind the Sun, so the data downlink has slowed to a trickle. But by early October, Mueller expects to have downloaded all the data from Solar Orbiter's Spring polar observations of the Sun. And within a matter of two to three months after the data is on the ground, the first scientific results will have been written up and submitted to journals for publication, says Mueller. These observations are also key to understanding the Sun's magnetic field and why it flips roughly every 11 years, coinciding with a peak in solar activity, says ESA. The spacecraft's instruments show that the Sun's South pole is a bit of a magnetic mess now, with both North and South polarity magnetic fields present, ESA notes. Ready To Flip Right now, there is not a clear dominant magnetic polarity, but a mix of the two, says Mueller. And that is exactly what you would expect to find during the maximum of the Sun's activity cycle, when the magnetic field is about to flip, he says. The real applications are for space weather predictions. Case in point, better space weather forecasting may have saved many of Elon Musk's 523 Starlink satellites that reentered Earth's atmosphere between 2020 and 2024. This period coincides with the rising phase of solar cycle 25, which has shown itself to be more intense than the previous solar cycle, the authors of a 2025 paper appearing in the journal Frontiers in Astronomy and Space Sciences write. Our results indisputably show that satellites reenter faster with higher geomagnetic activity, the authors note. There was a big solar storm that caused the earth's upper Earth atmosphere to expand, so, the satellites experienced more drag, and therefore didn't make it to orbit, says Mueller. One option may have been simply to hold off on launches until this increased period of solar activity enabled a less risky geomagnetic environment in Earth's upper atmosphere. The hope is that the Solar Orbiter mission and other missions like it will lead to better and more reliable space weather predictions that could potentially save hundreds of millions of dollars in the commercial satellite industry. Solar Orbiter should do its share in solving both pure solar physics conundrums as well as in more practical applications like space weather. The good news is that the spacecraft still has plenty of fuel left. Our current funding goes until the end of 2026, but because we had a picture-perfect launch provided by United Launch Alliance and NASA, we saved a lot of fuel, says Mueller. So, the onboard fuel reserves are so large that we can keep going for a long time, he says.

NASA spacecraft around the moon photographs the crash site of a Japanese company's lunar lander

time12 hours ago

NASA spacecraft around the moon photographs the crash site of a Japanese company's lunar lander

CAPE CANAVERAL, Fla. -- A NASA spacecraft around the moon has photographed the crash site of a Japanese company's lunar lander. NASA released the pictures Friday, two weeks after ispace's lander slammed into the moon. The images show a dark smudge where the lander, named Resilience, and its mini rover crashed into Mare Frigoris or Sea of Cold, a volcanic region in the moon's far north. A faint halo around the area was formed by the lunar dirt kicked up by the impact. NASA's Lunar Reconnaissance Orbiter captured the scene last week. The crash was the second failure in two years for Tokyo-based ispace. Company officials plan to hold a news conference next week to explain what doomed the latest mission, launched from Cape Canaveral in January. ___ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store