logo
Astrophysicist Jayant Narlikar passes away at 87 in Pune

Astrophysicist Jayant Narlikar passes away at 87 in Pune

MUMBAI: The noted astrophysicist Jayant Vishnu Narlikar passed away at the age of 87 in Pune on Tuesday. Mr Narlikar was not suffering from any major illness, but owing to age-related factors, he died peacefully in his sleep. The 87-year-old is survived by his three daughters, Geeta, Girija, and Leelavati, all of whom are involved in scientific research.
Mr Narlikar was the founding director of the Inter-University Centre for Astronomy and Astrophysics (IUCAA) and a passionate science communicator. He brought astrophysics, a complex subject, closer to the layperson and helped make it popular among students.
He was internationally renowned for his alternative cosmological theories that challenged the widely accepted Big Bang model. His research explored gravity, Mach's Principle, quantum cosmology, and action-at-a-distance physics. He also served as President of the Cosmology Commission of the International Astronomical Union from 1994 to 1997.
Prime Minister Narendra Modi said the death of Jayant Narlikar is a "monumental loss to the scientific community". "He was a luminary, especially in the field of astrophysics. His pioneering works, especially key theoretical frameworks will be valued by generations of researchers," he posted on X.
"He made a mark as an institution builder, grooming centres of learning and innovation for young minds. His writings have also gone a long way in making science accessible to common citizens," PM Modi added.
Maharashtra Chief Minister Devendra Fadnavis said that Mr Narlikar had made an immense contribution to astrophysics and brought a scientific approach to the masses. He noted that Jayant Narlikar inherited a mathematical legacy from his father and authored several fictional books on scientific subjects, becoming one of the major science writers in Marathi literature.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Are We Living Inside A Black Hole? NASA's Webb Telescope May Have Spotted The Evidence
Are We Living Inside A Black Hole? NASA's Webb Telescope May Have Spotted The Evidence

News18

time14 hours ago

  • News18

Are We Living Inside A Black Hole? NASA's Webb Telescope May Have Spotted The Evidence

Last Updated: NASA's Webb Telescope found early galaxies rotating in the same direction, reigniting theories that our universe may exist within a black hole. Further study is under way What if everything you've ever known – stars, galaxies, even your morning coffee – exists inside a cosmic Matryoshka doll? A mind-bending new discovery by NASA's James Webb Space Telescope has scientists revisiting one of the most radical ideas in physics: that our entire universe may be tucked inside a giant black hole. Is Our Universe Inside A Black Hole? A recent discovery by NASA's James Webb Space Telescope (JWST) is challenging long-held assumptions about the origins of the cosmos. The telescope has observed hundreds of ancient galaxies, some dating back merely 300 million years after the Big Bang, and found that a significant number appear to be rotating in the same direction. Roughly 60% of these early galaxies rotate clockwise, an alignment that defies the expectation of random motion in a universe born from a chaotic explosion. Such uniformity has led researchers to propose that a hidden structure or force may have been present at the universe's inception, potentially reshaping our understanding of cosmology. This unexpected consistency in rotation patterns brings into question key aspects of the Big Bang theory, which posits that galaxies should have developed with random orientations as matter dispersed haphazardly. Instead, the data suggest an organising influence, possibly the rotation of an enormous black hole encompassing our universe. The idea that our universe could reside within a black hole is not new, but the JWST's findings have breathed new life into the theory. These early galaxies, spotted in a region known as Pandora's Cluster, may have played a role in a major cosmic transformation. Cosmic Fog And Ionised Gas During the universe's first billion years, it was enveloped in a dense fog of neutral hydrogen gas. Today, that fog has cleared, with the gas now ionised; meaning its electrons have been stripped away. Some researchers argue that this transition supports a bold theory: that our entire universe could be the interior of a colossal black hole, one nested within a larger universe. In such a scenario, a black hole could serve not just as a gravitational trap, but as a bridge to a completely separate cosmos. Why is this once-speculative theory gaining serious attention now? Groundbreaking observations by the James Webb Space Telescope have revived interest by revealing patterns of galactic rotation that suggest a hidden organising force. If such a rotational influence existed from the very beginning, it may have stemmed from the spin of a supermassive black hole encompassing the universe itself. This idea could potentially resolve enduring puzzles in cosmology, such as the nature of space-time, the universe's unusually flat geometry, and the precise tuning of the conditions required for its formation. Still, not all scientists are convinced. Some suggest the findings could result from observational bias or technical limitations, such as redshift or the Doppler effect, rather than an actual pattern. The JWST team itself has emphasised that the results are preliminary and more detailed observations are required. Researchers are now working to determine whether this directional rotation can be observed in galaxies elsewhere. Should similar patterns be found, it could signal that our universe's beginnings were shaped not by chance, but by a deeper, hidden order. First Published:

Dark energy discovery changed understanding of universe: Nobel laureate
Dark energy discovery changed understanding of universe: Nobel laureate

Business Standard

timea day ago

  • Business Standard

Dark energy discovery changed understanding of universe: Nobel laureate

Dark matter pulls the universe and dark energy pushes, both mysteries that endure. And the discovery that a majority of the universe is made up of stuff that makes gravity push rather than pull was a gamechanger, says Nobel laureate Brian Schmidt. The US-born Australian astronomer along with Adam Riess and Saul Perlmutter from the US discovered the stuff, later termed dark energy, in 1998. The three won the Nobel Prize for Physics in 2011. Explaining the significance of their discovery that changed the understanding of how the universe functions, Schmidt told PTI, "Dark energy is really saying (that) there is energy tied to space itself. If we didn't have dark energy, the universe would be curved and the universe wouldn't accelerate -- and that changes how cosmic objects, such as galaxies, looks. It really makes a difference," the astronomer, who was visiting Ashoka University for the Lodha Genius Programme, added. The term dark energy is intentionally similar to dark matter. Dark matter refers to particles in the universe that hold galaxies and other structures in space (the cosmos) together. It is said to have peculiar properties, such as being invisible, as it does not interact with light. However, while "dark matter and atoms (that make up ordinary matter) are pulling the universe, dark energy is pushing the universe. There's a balance at any given time of who's winning the war -- dark energy has won the war, it seems now and is pushing the universe apart", Schmidt explained. That's because dark energy had a density set at the time of the Big Bang, said the 58-year-old former president of the Australian National University and currently a distinguished professor of astronomy. The Big Bang, believed to have given birth to the universe, happened some 13.8 billion years ago. Dark matter is among the particles formed immediately after the event, gravity exerted from which is said to produce a slowing effect on the universe's evolution. "And (dark energy) stayed at that density. But as the universe expanded, and the density of atoms and dark matter dropped over time, the two crossed about 6.5 billion years back -- and that crossing meant the dark energy could take over and accelerate the universe," Schmidt said. Work on the discovery that the universe is expanding at an accelerating rate and that dark energy is the driving force began in 1994. Schmidt and colleagues intended to look at distant objects and measure how fast the universe was expanding in the past, and then look at nearer objects to see how it slowed down over time. "And if we measured the universe slowing down really quickly, then we'd know that the universe was heavy and you're gonna get a Gnab Gib -- the Big Bang in reverse. But if the universe was slowing down slowly, then we'd know the universe is light and it's gonna exist forever. So that's what we were going to do." Three and a half years later came the answer. What we saw was the universe was expanding slower in the past and it sped up. So instead of slowing down, it's actually the other way -- it's speeding up," the Nobel laureate said. In 1917, physicist Albert Einstein first imagined dark energy as a concept -- only he did not think of it in those exact words but instead accounted for it in his equations of general relativity as a 'lambda' term. Einstein is said to have considered the lambda term irrelevant, even denouncing it as his greatest blunder. "When we made our discovery of the acceleration (of the universe), it was the only sensible way of making it happen. So that thing (the lambda term), that he (Einstein) brought in 1917 and then later discarded as being irrelevant, that seems to (be validated from) what we discovered," Schmidt continued. "In 1998, cosmology was shaken at its foundations as two research teams presented their findings...," states the press release dated October 4, 2011, announcing the recipients for the Nobel Prize in Physics for 2011. The 1998 model has since been scrutinised through experiments, mainly aimed at understanding the nature of dark energy -- is it constant or does it vary? "We put in some extra knobs in the model of 1998, where we allow dark energy to change over time. The models with the most recent data seem to prefer a dark energy that changes," Schmidt said. But he is sceptical. "I'm not saying they're wrong. I'm saying I need better data to be convinced they're right. He said he is also glad that someone else is working on it. Schmidt leads the 'SkyMapper Telescope Project' for which he conducted a survey of the southern sky as seen from Australia, focussed on looking at the "oldest, first stars in the galaxy". "We could see essentially what the chemistry of the universe was back really close to the Big Bang -- because if a star was formed right after the Big Bang, it's made up of the stuff that was in the universe at the time. "And so, we found the most chemically pure stars that have ever been discovered, ones that were almost certainly not formed from the remnants of the Big Bang, but from a single exploding star after the Big Bang. That just gives us a sense of what the first stars look like," said Schmidt, who has published his findings in several journals, including Nature. Schmidt, who addressed high schoolers and others on science as a potential career at the university, advised them to get the skills that seem useful for life by working on something that interests them. Not knowing what to do in life and the fact that he enjoyed astronomy made Schmidt pursue the field. "In learning astronomy, I'd learned math, I'd learned physics, I'd learned computing, I'd learned some engineering. And (while) I didn't think it was likely that I would get a job to be an astronomer, I knew math, engineering, physics, and computing liable to give me a good job doing something. And of course, I did end up being an astronomer," he said. "You don't really know how all of this is going to come together in your life, but if you work on something you're interested in, with a set of skills that seem useful for life, then don't overthink your life, don't overplan your life," Schmidt said.

Push and pull: Dark energy discovery changed understanding of universe, says Nobel laureate Brian Schmidt
Push and pull: Dark energy discovery changed understanding of universe, says Nobel laureate Brian Schmidt

Time of India

timea day ago

  • Time of India

Push and pull: Dark energy discovery changed understanding of universe, says Nobel laureate Brian Schmidt

Dark matter pulls the universe and dark energy pushes, both mysteries that endure. And the discovery that a majority of the universe is made up of "stuff" that makes gravity push rather than pull was a gamechanger, says Nobel laureate Brian Schmidt . The US-born Australian astronomer along with Adam Riess and Saul Perlmutter from the US discovered the "stuff", later termed dark energy, in 1998. The three won the Nobel Prize for Physics in 2011. Explaining the significance of their discovery that changed the understanding of how the universe functions, Schmidt told PTI, "Dark energy is really saying (that) there is energy tied to space itself." by Taboola by Taboola Sponsored Links Sponsored Links Promoted Links Promoted Links You May Like Play this game for 3 minutes, if you own a mouse Undo "If we didn't have dark energy, the universe would be curved and the universe wouldn't accelerate -- and that changes how cosmic objects, such as galaxies, looks. It really makes a difference," the astronomer, who was visiting Ashoka University for the Lodha Genius Programme, added. The term dark energy is intentionally similar to dark matter. Live Events Dark matter refers to particles in the universe that hold galaxies and other structures in space (the cosmos) together. It is said to have peculiar properties, such as being invisible, as it does not interact with light. However, while "dark matter and atoms (that make up ordinary matter) are pulling the universe, dark energy is pushing the universe. There's a balance at any given time of who's winning the war -- dark energy has won the war, it seems now and is pushing the universe apart", Schmidt explained. That's because dark energy had a density set at the time of the Big Bang , said the 58-year-old former president of the Australian National University and currently a distinguished professor of astronomy. The Big Bang, believed to have given birth to the universe, happened some 13.8 billion years ago. Dark matter is among the particles formed immediately after the event, gravity exerted from which is said to produce a slowing effect on the universe's evolution. "And (dark energy) stayed at that density. But as the universe expanded, and the density of atoms and dark matter dropped over time, the two crossed about 6.5 billion years back -- and that crossing meant the dark energy could take over and accelerate the universe," Schmidt said. Work on the discovery that the universe is expanding at an accelerating rate and that dark energy is the driving force began in 1994. Schmidt and colleagues intended to look at distant objects and measure how fast the universe was expanding in the past, and then look at nearer objects to see how it slowed down over time. "And if we measured the universe slowing down really quickly, then we'd know that the universe was heavy and you're gonna get a Gnab Gib -- the Big Bang in reverse. But if the universe was slowing down slowly, then we'd know the universe is light and it's gonna exist forever. So that's what we were going to do." Three and a half years later came the answer. "What we saw was the universe was expanding slower in the past and it sped up. So instead of slowing down, it's actually the other way -- it's speeding up," the Nobel laureate said. In 1917, physicist Albert Einstein first imagined dark energy as a concept -- only he did not think of it in those exact words but instead accounted for it in his equations of general relativity as a 'lambda' term. Einstein is said to have considered the lambda term irrelevant, even denouncing it as his "greatest blunder". "When we made our discovery of the acceleration (of the universe), it was the only sensible way of making it happen. So that thing (the lambda term), that he (Einstein) brought in 1917 and then later discarded as being irrelevant, that seems to (be validated from) what we discovered," Schmidt continued. "In 1998, cosmology was shaken at its foundations as two research teams presented their findings...," states the press release dated October 4, 2011, announcing the recipients for the Nobel Prize in Physics for 2011. The 1998 model has since been scrutinised through experiments, mainly aimed at understanding the nature of dark energy -- is it constant or does it vary? "We put in some extra knobs in the model of 1998, where we allow dark energy to change over time. The models with the most recent data seem to prefer a dark energy that changes," Schmidt said. But he is sceptical. "I'm not saying they're wrong. I'm saying I need better data to be convinced they're right." He said he is also glad that someone else is working on it. Schmidt leads the ' SkyMapper Telescope Project ' for which he conducted a survey of the southern sky as seen from Australia, focussed on looking at the "oldest, first stars in the galaxy". "We could see essentially what the chemistry of the universe was back really close to the Big Bang -- because if a star was formed right after the Big Bang, it's made up of the stuff that was in the universe at the time. "And so, we found the most chemically pure stars that have ever been discovered, ones that were almost certainly not formed from the remnants of the Big Bang, but from a single exploding star after the Big Bang. That just gives us a sense of what the first stars look like," said Schmidt, who has published his findings in several journals, including Nature. Schmidt, who addressed high schoolers and others on science as a potential career at the university, advised them to get the skills that seem useful for life by working on something that interests them. Not knowing what to do in life and the fact that he enjoyed astronomy made Schmidt pursue the field. "In learning astronomy, I'd learned math, I'd learned physics, I'd learned computing, I'd learned some engineering. And (while) I didn't think it was likely that I would get a job to be an astronomer, I knew math, engineering, physics, and computing liable to give me a good job doing something. And of course, I did end up being an astronomer," he said. "You don't really know how all of this is going to come together in your life, but if you work on something you're interested in, with a set of skills that seem useful for life, then don't overthink your life, don't overplan your life," Schmidt said.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store