
Not June 19, now Ax-4 launch may happen on June 22 or 23
Crew members of Axiom-4 mission
BENGALURU: The launch of
Axiom-4 mission
, which has been delayed multiple times owing to a reasons ranging from glitches in the spacecraft, leak and snag in the rocket, weather and leaks at the
International Space Station
, is now being targeted for June 22 or 23.
Nasa
, Axiom Space, and SpaceX are now targeting no earlier than Sunday, June 22, the Houston-based firm, which is implementing its fourth private astronaut mission to the International Space Station (ISS), said.
'Launch is targeted for 3.42 am Eastern Time on June 22, with a backup opportunity available on June 23 at 3.20am,' SpaceX said..
Isro said that its team, along with those from Poland and Hungary engaged in a detailed discussion with Axiom Space regarding the probable launch timeline. Following this, Axiom Space held consultations with Nasa and SpaceX to assess multiple readiness parameters.
by Taboola
by Taboola
Sponsored Links
Sponsored Links
Promoted Links
Promoted Links
You May Like
20 Most Expensive Cars In The World
LuxYouDesire.com
'...Based on the readiness status of the
SpaceX Falcon-9
launch vehicle, the Dragon spacecraft, repairs in the ISS' Zvezda module, ascent corridor weather conditions, and the health and preparedness of the crew in quarantine, Axiom has informed that the next probable launch date is June 22,' it added.
The revised schedule gives Nasa additional time to assess the ISS operational readiness, following recent repair work in the aft segment of its Russian-built Zvezda service module.
The launch, originally targeted for May 29, was deferred to June 8 following the detection of an issue in the electrical harness of the Crew Dragon module, Isro had said earlier. It was then postponed by a day to June 9, which was not publicly announced, and then rescheduled to June 10.
The June 10 launch was rescheduled once again. During preparations for a hot fire test on June 8, SpaceX engineers detected a liquid oxygen (LOX) leak in Falcon-9. An anomaly was also found in one of the engine actuators, which was subsequently replaced along with its controller.
Expecting a quick resolution of the LOX leak, the mission was initially rescheduled for June 11. Isro said it had stressed on
crew safety
in review meetings. Mission partners then decided to postpone the launch further to conduct a test to validate the corrections carried out.
On whether the multiple delays have affected the payloads India is planning to send on the mission, Isro chairman V Narayanan, who is leading the Isro delegation in Florida, told TOI: 'We have to review before deciding whether there needs to be some action on that. As of now, there is nothing to report.'
When TOI had, during its visit to Florida, asked another member of the Isro team about a potential problem with the payload, the member had said on June 12: 'Payload-loading happens the last. They are secure until then. At this juncture, we have nothing to worry about. We will review the situation again later.'
However, storage of payloads, especially
biological payloads
, may require attention if stored for prolonged periods of time. Narayanan said: 'I will get back after a review.'
Commanded by former Nasa astronaut
Peggy Whitson
, the mission will see Isro's astronaut group captain Shubhanshu Shukla take the role of pilot. The other two crew members, both mission specialists, are Polish ESA astronaut Sławosz Uznański-Wiśniewski and Hungary's Tibor Kapu.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Indian Express
4 hours ago
- Indian Express
ISRO readies SpaDeX-2 mission to dock satellites in elliptical orbit
After successfully bringing together two satellites in space, scientists at the Indian Space Research Organisation (ISRO) are drawing up plans for a second SpaDeX mission — this time to dock two satellites in an elliptical orbit. The ability to join two satellites in space, known as docking, is critical for India's upcoming Chandrayaan-4 mission and the proposed Bharatiya Antariksh Station, the country's planned space station. In the first SpaDeX mission, two 220-kg satellites were launched into a 470-km circular orbit. With a small relative velocity introduced between them, the satellites were allowed to drift apart before being progressively brought closer. On January 16, they successfully docked. The experiment also demonstrated power sharing between the satellites and their ability to receive commands as a single composite unit. With this, India became only the fourth country, after the US, Russia, and China, to demonstrate in-space docking capabilities. However, the feat was carried out in a relatively easier circular orbit. 'Docking in a circular orbit is much easier than docking in an elliptical orbit. This is because the trajectory and velocity of the satellites remain constant in a circular orbit, whereas they keep changing on an elliptical orbit. What this essentially means is that calculations done for one point will not be relevant after a few minutes,' said a scientist in the know of the matter. 'This is, however, what the SpaDeX 2 experiment will attempt.' This capability is likely to play a vital role in future missions, such as Chandrayaan-4, where multiple modules may be launched separately, and docking and undocking will be required in both Earth and lunar orbits. For moon missions, ISRO typically launches spacecraft into an elliptical Earth orbit, gradually raising the apogee (farthest point) through engine burns at perigee (closest point) to use minimal fuel. This process sets up a slingshot trajectory toward the Moon, making docking in elliptical orbits a practical requirement for complex missions. The first docking operation took a considerable amount of time, as the agency approached it with extreme caution. 'This was the first time ISRO was attempting docking and undocking, so everything had to be meticulously planned and tested. In fact, several of the sensors being used were developed for this mission itself and had to be calibrated to readings in space. Once that was done, the readings were used to conduct several simulations on Earth before the actual docking was attempted. And, even then, the satellites were brought closer very slowly. With all the knowledge gathered during the first docking, the second became easier. It was quicker, without the satellites needing to stop and go as many times as the first time,' the scientist said. During the initial attempt, the SpaDeX satellites were brought progressively closer, halting at designated checkpoints – 5 km, 1.5 km, 500 m, 225 m, 15 m, and 3 m – before finally docking. In the second attempt, post-separation, the process was smoother and faster, with fewer halts en route to redocking. Anonna Dutt is a Principal Correspondent who writes primarily on health at the Indian Express. She reports on myriad topics ranging from the growing burden of non-communicable diseases such as diabetes and hypertension to the problems with pervasive infectious conditions. She reported on the government's management of the Covid-19 pandemic and closely followed the vaccination programme. Her stories have resulted in the city government investing in high-end tests for the poor and acknowledging errors in their official reports. Dutt also takes a keen interest in the country's space programme and has written on key missions like Chandrayaan 2 and 3, Aditya L1, and Gaganyaan. She was among the first batch of eleven media fellows with RBM Partnership to End Malaria. She was also selected to participate in the short-term programme on early childhood reporting at Columbia University's Dart Centre. Dutt has a Bachelor's Degree from the Symbiosis Institute of Media and Communication, Pune and a PG Diploma from the Asian College of Journalism, Chennai. She started her reporting career with the Hindustan Times. When not at work, she tries to appease the Duolingo owl with her French skills and sometimes takes to the dance floor. ... Read More


Time of India
10 hours ago
- Time of India
Axiom-4 astronauts to study insulin behaviour in microgravity, revolutionise diabetes treatment
New Delhi: Indian astronaut Shubhanshu Shukla's Axiom-4 mission to the International Space Station (ISS) is set to offer a ray of hope for diabetics to travel to space, as a UAE-based healthcare provider is conducting an experiment on how glucose behaves in microgravity part of the "Suite Ride" experiment planned by Burjeel Holdings and Axiom Space, some astronauts of the Axiom-4 mission will be wearing continuous glucose monitors during their 14-day stay on board the orbital lab. The studies of the behaviour of glucose and insulin in microgravity conditions will help scientists develop wearable technologies for astronauts and patients who are bedridden or have limited mobility due to illnesses such as paralysis. "We are trying just to see if there is any change or fluctuation to the blood-sugar levels while they are in space," Mohammad Fityan, chief medical officer at Burjeel Holdings, Abu Dhabi, told PTI. The astronauts will also carry insulin pens in refrigerated and ambient temperatures to examine how the molecules respond to microgravity conditions. "We are hoping that if we learn something about the metabolism or the effect, we will bring some information and we can do something for our patients on Earth," Fityan said. Currently, the National Aeronautics and Space Administration (NASA) does not allow insulin-dependent diabetics to travel to space. There are no official exclusions for non-insulin-dependent diabetics, but so far, no astronaut with diabetes has travelled to space. "It has the potential to transform the future of space travel for astronauts with insulin-dependent diabetes mellitus (IDDM), a condition historically considered disqualifying for space missions," Fityan said. He said the study will pave the way for several innovative technologies and treatment approaches for developing advanced glucose-monitoring tools optimised for extreme or low-activity environments, improving wearable tech for both astronauts and patients with limited mobility on Earth. It will also help identify new pharmacologic targets by observing how metabolic and hormonal responses change in microgravity, leading to drugs that enhance insulin sensitivity or mimic the benefits of exercise in sedentary individuals. The AI-powered predictive models based on real-time physiologic data in space can be adapted to personalise diabetes care on Earth by forecasting insulin needs or metabolic shifts with higher accuracy. The research will also help develop remote monitoring platforms for continuous metabolic-data capture that could revolutionise diabetes care in underserved or remote areas on Earth as well as in tele-health settings.


Mint
12 hours ago
- Mint
Fighter jet maker Hindustan Aeronautics Limited bags transfer of technology of SSLV from ISRO for ₹511 crore
In a significant milestone, Hindustan Aeronautics Limited (HAL) was on Friday declared the winner of the bid for the transfer of technology of the Small Satellite Launch Vehicle (SSLV), the Indian Space Research Organisation's (ISRO) rocket to place satellites up to 500 kg in low-earth orbit, edging out two consortia. According to a PTI report, fighter jet manufacturer HAL was the standalone bidder for the coveted contract to build the ISRO-designed rocket and was pitted against the two consortia – one led by Alpha Design Technologies, backed by the Adani Group, and the other led by Hyderabad-based Bharat Dynamics Limited. In a message on X, HAL said that it will be responsible for absorbing, manufacturing and commercialising SSLV technology. 'HAL's selection for the SSLV ToT will enable indigenous production and further development of small satellite launch capabilities, opening up new partnerships with domestic and international satellite operators,' Dr DK Sunil, Chairman and Managing Director of HAL, said. HAL presented the winning bid of ₹ 511 crore to emerge as the sole manufacturer of the SSLV after the completion of the process of transfer of technology that is expected to take place over the next two years, the PTI report said. "Under this technology-transfer agreement, HAL will have the capability to independently build, own and commercialise SSLV launches," Pawan Kumar Goenka, chairman, Indian National Space Promotion and Authorisation Centre (INSPACe), told a press conference in New Delhi. HAL will be the third company to build rockets after space sector start-ups Skyroot Aerospace and Agnikul Cosmos, the report added. Goenka said nine companies had evinced interest in the transfer of technology of the SSLV, of which three were rejected. Of the remaining six, three chose not to apply. "The SSLV technology transfer marks a pivotal moment in India's transformative commercial space segment, as this is one of the first instances of a space agency transferring complete launch vehicle technology to a company," he said. Goenka said that ISRO will handhold HAL and assist it in building two prototype rockets over the next two years. After that, the state-owned company is expected to independently produce six to 10 SSLVs every year, depending on the demand. "HAL will be free to improve on the design and select its own vendors from the third rocket after the two-year period," Goenka said. According to HAL, SSLV is a compact, cost-effective, and highly flexible launch vehicle developed by ISRO to address the rapidly growing demand for launching small satellites into Low Earth Orbit. The SSLV was developed by the ISRO to launch small satellites into low-earth orbit at a shorter notice, a capability required by the defence forces in times of emergencies. "This collaboration marks a significant step towards strengthening India's commercial satellite-launch capabilities and more specifically, in enabling Indian industry in realising this SSLV," Radhakrishnan Durairaj, Chairman and Managing Director of New Space India Limited (NSIL), said. According to the PTI report, the move is part of efforts to allow the ISRO to focus more on research and hive off the routine activities of launching satellites, using proven launch vehicles to the industry. "We are looking forward to working closely under the ISRO and IN-SPACe's guidance to progress in phases and realise the end objectives. We are confident of steering a cohesive ecosystem that enables more small satellite launches from India's ports," DK Sunil, CMD, HAL, said. The technology-transfer agreement will be signed among HAL, NSIL, ISRO and IN-SPACe.