
Axiom-4 launch delayed again: NASA cites space station repairs; launch postponed to June 22
The Axiom-4 mission, which includes India's
Shubhanshu Shukla
among its crew, has been delayed once again. The launch is now scheduled for June 22.
"The change in a targeted launch date provides
NASA
time to continue evaluating space station operations after recent repair work in the aft (back) most segment of the
International Space Station
's Evezda service modulem," a statement by Axiom read.
Originally scheduled for launch on June 11 from NASA's Kennedy Space Center in Florida, the mission was postponed after SpaceX detected a liquid oxygen (LOX) leak during booster inspection. ISRO confirmed the delay, stating: "It has been decided to correct the leak and carry out necessary validation test before clearing for the launch."
Axiom-4 will be commanded by former NASA astronaut Peggy Whitson, with Shukla as the pilot. Mission specialists include ESA's Slawosz Uznanski from Poland and Hungary's Tibor Kapu. This marks the first government-sponsored human spaceflight for India, Poland, and Hungary in over 40 years.
'This mission is much larger than myself,' Shukla said. 'I hope to inspire curiosity in children back home. If this story changes even one life, it's a success.'
The 14-day mission aims to conduct 60 scientific experiments representing 31 countries, making it Axiom's most research-intensive mission yet. Areas of focus include microgravity studies, biological and material sciences, and Earth observation. The mission also underscores deepening global cooperation in space.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Indian Express
4 hours ago
- Indian Express
ISRO readies SpaDeX-2 mission to dock satellites in elliptical orbit
After successfully bringing together two satellites in space, scientists at the Indian Space Research Organisation (ISRO) are drawing up plans for a second SpaDeX mission — this time to dock two satellites in an elliptical orbit. The ability to join two satellites in space, known as docking, is critical for India's upcoming Chandrayaan-4 mission and the proposed Bharatiya Antariksh Station, the country's planned space station. In the first SpaDeX mission, two 220-kg satellites were launched into a 470-km circular orbit. With a small relative velocity introduced between them, the satellites were allowed to drift apart before being progressively brought closer. On January 16, they successfully docked. The experiment also demonstrated power sharing between the satellites and their ability to receive commands as a single composite unit. With this, India became only the fourth country, after the US, Russia, and China, to demonstrate in-space docking capabilities. However, the feat was carried out in a relatively easier circular orbit. 'Docking in a circular orbit is much easier than docking in an elliptical orbit. This is because the trajectory and velocity of the satellites remain constant in a circular orbit, whereas they keep changing on an elliptical orbit. What this essentially means is that calculations done for one point will not be relevant after a few minutes,' said a scientist in the know of the matter. 'This is, however, what the SpaDeX 2 experiment will attempt.' This capability is likely to play a vital role in future missions, such as Chandrayaan-4, where multiple modules may be launched separately, and docking and undocking will be required in both Earth and lunar orbits. For moon missions, ISRO typically launches spacecraft into an elliptical Earth orbit, gradually raising the apogee (farthest point) through engine burns at perigee (closest point) to use minimal fuel. This process sets up a slingshot trajectory toward the Moon, making docking in elliptical orbits a practical requirement for complex missions. The first docking operation took a considerable amount of time, as the agency approached it with extreme caution. 'This was the first time ISRO was attempting docking and undocking, so everything had to be meticulously planned and tested. In fact, several of the sensors being used were developed for this mission itself and had to be calibrated to readings in space. Once that was done, the readings were used to conduct several simulations on Earth before the actual docking was attempted. And, even then, the satellites were brought closer very slowly. With all the knowledge gathered during the first docking, the second became easier. It was quicker, without the satellites needing to stop and go as many times as the first time,' the scientist said. During the initial attempt, the SpaDeX satellites were brought progressively closer, halting at designated checkpoints – 5 km, 1.5 km, 500 m, 225 m, 15 m, and 3 m – before finally docking. In the second attempt, post-separation, the process was smoother and faster, with fewer halts en route to redocking. Anonna Dutt is a Principal Correspondent who writes primarily on health at the Indian Express. She reports on myriad topics ranging from the growing burden of non-communicable diseases such as diabetes and hypertension to the problems with pervasive infectious conditions. She reported on the government's management of the Covid-19 pandemic and closely followed the vaccination programme. Her stories have resulted in the city government investing in high-end tests for the poor and acknowledging errors in their official reports. Dutt also takes a keen interest in the country's space programme and has written on key missions like Chandrayaan 2 and 3, Aditya L1, and Gaganyaan. She was among the first batch of eleven media fellows with RBM Partnership to End Malaria. She was also selected to participate in the short-term programme on early childhood reporting at Columbia University's Dart Centre. Dutt has a Bachelor's Degree from the Symbiosis Institute of Media and Communication, Pune and a PG Diploma from the Asian College of Journalism, Chennai. She started her reporting career with the Hindustan Times. When not at work, she tries to appease the Duolingo owl with her French skills and sometimes takes to the dance floor. ... Read More

The Hindu
8 hours ago
- The Hindu
Is it a moon? Is it a dwarf planet? Well, it's Charon, and it could well be both!
Charon's discovery The story of Charon's discovery takes us back to 1978 – a time when even astronomers were still thinking that Pluto was a planet. Little was known about Pluto and its system, but all that was about to change in the decades that followed. On the morning of June 22, American astronomer James Christy already had his head whirling around. If you were under the impression that he was zeroing in on the solution for an astronomical problem, you couldn't be further from the truth. Christy was sharpening his plans to move his house, getting ready for a week's leave from the U.S. Naval Observatory in Flagstaff, Arizona – his workplace. It was under these circumstances that Robert Harrington, his boss, handed him a set of six photographs of Pluto. Christy and Harrington were looking to refine Pluto's orbit around the sun – a journey that takes Pluto 248 Earth years. Pluto's average distance from the sun is 5.9 billion km. The technology available at that time meant that even the best photographs of it hardly revealed anything. What's more, these six images – acquired in pairs over three nights in the month between April 13 and May 12 – were labelled as 'defective.' Odd blobs The reason why these pictures were labelled thus owed to the fact that they revealed Pluto to be oddly elongated. Viewing them under a microscope, Christy noticed that the fuzzy blob that was to be Pluto stretched in a northern direction in two of those pairs, while the final pair showed a southward direction. The defects were attributed either to atmospheric distortion or improper optical alignment in the telescope used for observations. After ruling out an explosion on Pluto as an unlikely explanation – especially as it lasted a month – Christy searched for other plausible reasons. There was a chance that Pluto itself was irregular in shape. Or could there be an unseen moon, even though one of his former professors, celebrated Dutch-American astronomer Gerard Kuiper, had searched for exactly the same decades earlier without any success? When Christy went over to the archives to check through older plates from 1965 onwards, there it was... the same elongation. What's more, all these images had also been dismissed as defective on every occasion. Correct conclusions Christy and Harrington, however, realised that they were onto something. By reviewing all the images with the elongations, they were able to state that the bulge occurred with a predictable frequency. This frequency of the unseen moon's orbital period – 6.4 Earth days – matched with what astronomers believed to be Pluto's rotational period, suggesting a synchronously locked binary system. The duo ruled out other possible reasons for the bulge and concluded correctly that Pluto had another companion at a distance of 19,640 km. The discovery of 'S/1978 P1' was announced by them through the International Astronomical Union (IAU) on July 7 and their findings were published in the Astronomical Journal. What started out as reviewing six defective images, served as the seeds for a whole new discovery. As Christy himself once pointed out, 'Discovery is where the scientist touches nature in its least predictable aspect.' What's in a name? As the discoverer, Christy wanted to exercise his rights for naming Pluto's companion. And he had his mind set on naming it after his wife. The Naval Observatory he worked for had suggested the name Persephone, the wife of Hades. Hades, the god of the underworld in Greek mythology, was the equivalent of the Roman god Pluto after which it is named. As luck would have it, Christy came across a reference to Charon, a boatman who ferried the dead across a river in the underworld to Hades. Charon's close mythical association with Hades, or Pluto, made it a great option for the newly discovered astronomical object. It was the perfect option for Christy as his wife's name was Charlene. In addition to sharing the first four letters, 'Char' was the nickname that friends and family used to call his wife. Just like how protons and electrons have the 'on' suffix, Christy saw Charon as 'Char' with the suffix 'on' and submitted his name. Eclipses and occultations By the time this name was accepted by IAU in January 1986, Pluto and Charon had a series of mutual eclipses and occultations. Studying them enabled astronomers in general, and Harrington in particular, to confirm the existence of Charon as he observed the eclipses and occultations to occur as predicted. Observing Pluto and Charon in this manner also enabled astronomers to arrive at Charon's diameter to be about 1,200 km, while also arriving at better estimates of the size and mass of Pluto. From a small dot in a photograph, Charon had become much much more – almost a world in its own right. It definitely meant the world to Christy in more ways than one, as he was also able to gift his wife the moon! Charlene Christy probably summed it the best when she said 'A lot of husbands promise their wives the moon, but Jim actually delivered.' Charon fact sheet Most of what we know about Charon, or even Pluto for that matter, is thanks to NASA's New Horizons mission. Approved in 2001 as the first flyby of Pluto and its largest moon Charon, it was launched in January 2006. This was months before IAU's decision in August the same year to demote Pluto's designation from a planet to a dwarf planet. Despite the fact that Pluto was plutoed, the mission went on, providing us invaluable information. Before New Horizons' closest approach to Pluto on July 14, 2015, the spacecraft captured plenty of images of Charon. While the images revealed a striking reddish north (top) polar region, Charon's colour palette wasn't as diverse as Pluto's. The origins of this red colouration is a mystery for now and no other icy object in the solar system sports a similar feature. Charon is 1,214 km across and is at a distance of 19,640 km from Pluto. As Pluto's equatorial diameter is about 2,377 km, Charon is nearly half the size of Pluto. This makes it the largest known satellite relative to its parent body for most astronomers. It is this same size, however, that forces other astronomers to consider Pluto and Charon as a double dwarf planet system. Charon's orbit takes 6.4 Earth days to go around Pluto. Charon neither rises or sets, however, but instead hovers near the same region on Pluto's surface. The same surfaces of Charon and Pluto always face each other due to a phenomenon called mutual tidal locking.


Time of India
10 hours ago
- Time of India
Axiom-4 astronauts to study insulin behaviour in microgravity, revolutionise diabetes treatment
New Delhi: Indian astronaut Shubhanshu Shukla's Axiom-4 mission to the International Space Station (ISS) is set to offer a ray of hope for diabetics to travel to space, as a UAE-based healthcare provider is conducting an experiment on how glucose behaves in microgravity part of the "Suite Ride" experiment planned by Burjeel Holdings and Axiom Space, some astronauts of the Axiom-4 mission will be wearing continuous glucose monitors during their 14-day stay on board the orbital lab. The studies of the behaviour of glucose and insulin in microgravity conditions will help scientists develop wearable technologies for astronauts and patients who are bedridden or have limited mobility due to illnesses such as paralysis. "We are trying just to see if there is any change or fluctuation to the blood-sugar levels while they are in space," Mohammad Fityan, chief medical officer at Burjeel Holdings, Abu Dhabi, told PTI. The astronauts will also carry insulin pens in refrigerated and ambient temperatures to examine how the molecules respond to microgravity conditions. "We are hoping that if we learn something about the metabolism or the effect, we will bring some information and we can do something for our patients on Earth," Fityan said. Currently, the National Aeronautics and Space Administration (NASA) does not allow insulin-dependent diabetics to travel to space. There are no official exclusions for non-insulin-dependent diabetics, but so far, no astronaut with diabetes has travelled to space. "It has the potential to transform the future of space travel for astronauts with insulin-dependent diabetes mellitus (IDDM), a condition historically considered disqualifying for space missions," Fityan said. He said the study will pave the way for several innovative technologies and treatment approaches for developing advanced glucose-monitoring tools optimised for extreme or low-activity environments, improving wearable tech for both astronauts and patients with limited mobility on Earth. It will also help identify new pharmacologic targets by observing how metabolic and hormonal responses change in microgravity, leading to drugs that enhance insulin sensitivity or mimic the benefits of exercise in sedentary individuals. The AI-powered predictive models based on real-time physiologic data in space can be adapted to personalise diabetes care on Earth by forecasting insulin needs or metabolic shifts with higher accuracy. The research will also help develop remote monitoring platforms for continuous metabolic-data capture that could revolutionise diabetes care in underserved or remote areas on Earth as well as in tele-health settings.