logo
James Webb telescope reveals 'impossible' auroras on Jupiter that have astronomers scratching their heads

James Webb telescope reveals 'impossible' auroras on Jupiter that have astronomers scratching their heads

Business Mayor15-05-2025

On Christmas Day in 2023, scientists trained the James Webb Space Telescope (JWST) on Jupiter's auroras and captured a dazzling light show.
The researchers observed rapidly-changing features in Jupiter's vast auroras using JWST's infrared cameras. The findings could help explain how Jupiter's atmosphere is heated and cooled, according to a study published May 12 in Nature Communications .
'What a Christmas present it was — it just blew me away!' study coauthor Jonathan Nichols , a researcher studying auroras at the University of Leicester in the UK, said in a statement . 'We wanted to see how quickly the auroras change, expecting them to fade in and out ponderously, perhaps over a quarter of an hour or so. Instead, we observed the whole auroral region fizzing and popping with light, sometimes varying by the second.'
You may like
Auroras form when high-energy charged particles, often released from the sun, slam into gases in a planet's atmosphere, causing the gas to glow. Jupiter's strong magnetic field scoops up charged particles such as electrons from the solar wind — and from eruptions on its highly volcanic moon Io — and sends them hurtling toward the planet's poles, where they put on a spectacle hundreds of times brighter than Earth's Northern Lights .
Related: NASA reveals 'glass-smooth lake of cooling lava' on surface of Jupiter's moon Io
In the new study, the team looked closely at infrared light emitted by the trihydrogen cation, H 3 +. This molecule forms in Jupiter's auroras when energetic electrons meet hydrogen in the planet's atmosphere. Its infrared emission sends heat out of Jupiter's atmosphere, but the molecule can also be destroyed by fast-moving electrons. To date, no ground-based telescopes have been sensitive enough to determine exactly how long H 3 + sticks around.
But by using JWST's Near Infrared Camera, the team observed H 3 + emissions that varied more than they expected. They found that H 3 + lasts about two and a half minutes in Jupiter's atmosphere before being destroyed. That could help scientists tease out how much of an effect H 3 + has on cooling Jupiter's atmosphere.
Get the world's most fascinating discoveries delivered straight to your inbox.
But the scientists don't have the full picture yet. They also found some puzzling data when they turned the Hubble Space Telescope toward Jupiter at the same time. Hubble captured the ultraviolet light coming from the auroras, while JWST captured infrared light.
'Bizarrely, the brightest light observed by Webb had no real counterpart in Hubble's pictures,' Nichols said in the statement. 'This has left us scratching our heads. In order to cause the combination of brightness seen by both Webb and Hubble, we need to have a combination of high quantities of very low-energy particles hitting the atmosphere, which was previously thought to be impossible. We still don't understand how this happens.'

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Northern lights may be visible in these 9 US States tonight
Northern lights may be visible in these 9 US States tonight

Yahoo

timea day ago

  • Yahoo

Northern lights may be visible in these 9 US States tonight

When you buy through links on our articles, Future and its syndication partners may earn a commission. Unsettled geomagnetic activity could bring northern lights to parts of the U.S. tonight (June 19–20). A coronal mass ejection (CME) released during a relatively small C5.5 solar flare on June 17 may deliver a glancing blow to Earth sometime tonight. This, combined with fast solar wind streaming from a large Earth-facing coronal hole, could fuel geomagnetic storm conditions overnight, according to NOAA's Space Weather Prediction Center (SWPC). Space weather forecasters at SWPC predict a chance of minor G1 geomagnetic storm conditions (Kp 5) between 2 a.m. and 5 a.m. EDT (0600–0900 GMT) on June 20. (Kp is a measurement of geomagnetic activity, with an index that ranges from 0 to 9; higher Kp indicates stronger auroral activity.) You can keep up with the latest forecasts and geomagnetic storm warnings with our aurora forecast live blog. In the U.S., Alaska has the highest chance of seeing the northern lights tonight. If predicted G1 storms are reached, auroras could be visible down to Michigan and Maine, and perhaps even further according to NOAA. Below we have listed 9 states that appear either fully or in part above the possible view line for auroras tonight, according to NOAA's Space Weather Prediction Center. They are ordered most likely to least likely based on their proximity to the center of the auroral oval and how much of each state is within or near the view like Connecticut, Rhode Island, Nebraska, Iowa and Illinois are very close to the possible view line but would require stronger geomagnetic activity than forecast for visibility. That being said, geomagnetic storms have surprised us in the past, whereby forecasted G1 conditions jump to G2 or even G3. So it's worth keeping your eyes on the skies and those aurora alerts switched on. Remember, auroras can be fickle. Sometimes they can appear much farther south than predicted, and other times they barely show up at all. There are many conditions that have to align for the perfect show. It is possible that many more states could witness auroras tonight, or perhaps far fewer will. Alaska Montana North Dakota Minnesota Wisconsin Michigan (especially the Upper Peninsula) Maine Vermont New Hampshire If you live in one of the 9 states forecasted to have a chance of seeing the northern lights tonight, head to a north-facing vantage point as far away from light pollution as possible! The best time to look for auroras will be about 1 a.m. local time, as our window of darkness for observing the northern lights shrinks during summer months. Use your mobile phone to scan the skies, as the camera is great at picking up faint auroras before your eyes spot them. This can help you pinpoint where in the sky you should be focusing your attention. But remember to keep an eye out elsewhere too as auroras can pop up in front, behind or even above you! Happy aurora hunting. If you want to make sure you're all clued up on when to look for auroras, download a space weather app that provides forecasts based on your location. One option I use is "My Aurora Forecast & Alerts," available for both iOS and Android. However, any similar app should work well. I also use the "Space Weather Live" app, which is available on iOS and Android, to get a deeper understanding of whether the current space weather conditions are favorable for aurora sightings.

1st images from the Vera C Rubin Observatory will drop on June 23. Here's why that's such a big deal
1st images from the Vera C Rubin Observatory will drop on June 23. Here's why that's such a big deal

Yahoo

timea day ago

  • Yahoo

1st images from the Vera C Rubin Observatory will drop on June 23. Here's why that's such a big deal

When you buy through links on our articles, Future and its syndication partners may earn a commission. On Monday (June 23), the public and the wider science community will get their first look at images from the Vera C. Rubin Observatory. This will arguably mark the biggest moment in astronomy since the first images from the James Webb Space Telescope (JWST) were revealed in the summer of was built by the National Science Foundation and the U.S. Department of Energy's Office of Science on the mountain Cerro Pachón, high in the dry atmosphere of northern Chile. When its operational, the observatory will construct what Director of Rubin Observatory's construction, Željko Ivezić, described as the "greatest movie of all time and the most informative map of the night sky ever assembled." The 8.4-meter telescope, equipped with the largest digital camera ever, will conduct the decade-long Legacy Survey of Space and Time (LSST), capturing the entire southern sky over Earth every 3 nights. To get you properly prepped for the first images from Rubin, spoke to an array of scientists who will work with the observatory, as well as others who are just excited to see what images and data this groundbreaking instrument is set to reveal. However, be warned: they're tight-lipped about just what images we will see."Until the images are revealed next week, all I can say is that people are going to be amazed at what we're able to see already," Andrés Alejandro Plazas Malagón, a researcher at Stanford University and part of the Rubin Observatory's Community Science Team, told "I am excited about using the largest digital camera in the world for astronomy — the LSSTCam, with 3.2 gigapixels — to survey the entire sky visible from its location in Chile over a 10-year period. This is something that has never been done before. "We will be able to gather more data than any galaxy survey to date to help answer fundamental open questions in astronomy." Mireia Montes is a Ramón y Cajal Fellow at the Institute of Space Sciences (ICE-CSIC) who will use Rubin to track stars drifting between galaxies via the faint "intracluster light" they emit."Rubin is exciting because it is going to be huge! Surveys are normally limited by how much area they cover or how deep they go, following a method called the 'wedding cake strategy'," Montes said."This means they cover a large area but are not very detailed, or small areas in great detail. Large areas are good for having lots of galaxies, but depth is better for seeing faint things like the details of galaxies or very distant galaxies. You usually choose whether to go for depth or area. Rubin is going to provide both depth and area! This will help us to see things that are not usually very clear. "The general public will see that the night sky is not as dark as we see it. In fact, when you look at deep images, you can see that there are objects (like stars and galaxies) everywhere you look. I think people are going to be amazed by the number of objects in this image, just as we were by the Hubble Deep Field ... but on a very different scale, as Rubin's camera is huge. Rubin is going to show us the universe in a totally new way!" The wide-field view of Rubin will see the LSST gather data that could finally solve lingering mysteries surrounding dark energy, the force that accounts for around 68% of our universe's matter-energy content and causes the expansion of the cosmos to accelerate. It is somewhat startling to consider that despite all of humanity's advances in science, we still only know what around 5% of the universe's contents are. All stars, planets, moons, animals, plants, and inanimate objects, everything we see is "baryonic matter" composed of atoms, but there is a lot more to the universe than this. The rest of the matter-energy content is known as the "dark universe." Rubin has the right stuff to shine a light on the dark universe, which is divided into dark energy and dark matter, both of which account for about 17% of the universe's matter and energy but remains invisible because it doesn't interact with light. "Studies of dark energy and dark matter are highly complementary with the Rubin Observatory and its LSST," Plazas Malagón said. "For dark energy, the LSST will measure the shapes and properties of billions of galaxies — an order of magnitude more than current photometric galaxy surveys — across cosmic time. "This will allow Rubin to probe the growth of the large-scale structure of the universe, namely the cosmic web, which is dominated by dark matter, and the expansion history of the universe." Plazas Malagón explained that the LSST will revolutionize the study of dark matter by mapping the sky with unprecedented depth and precision. This will enable the detection of the smallest dark matter halos that surround small satellite dwarf galaxies and wrap around stellar streams. The observatory will also use a phenomenon first predicted in 1916 by Einstein called "gravitational lensing" to investigate the distribution of dark matter through large galaxies."It will test dark matter properties such as self-interactions, warm or ultra-light masses, and the presence of compact objects like primordial black holes," Plazas Malagón continued. "The LSST will also constrain exotic dark matter models — including axion-like particles — through stellar population measurements, and provide high-resolution maps of large-scale structure to explore how dark matter and dark energy interact. "Combined with other experiments, LSST will offer powerful, complementary tests of dark matter's fundamental nature." Among the most curious dark energy findings since its discovery in 1998 are hints from the Dark Energy Spectroscopic Instrument (DESI) that this mysterious force is weakening over time. The wide-field view of Rubin could help confirm this, which would prompt revisions to the standard model of cosmology, or Lambda Cold Dark Matter (LCDM), a model built on a constant dark energy strength. "The LSST will collect vastly more data, which will help determine whether this is a real effect or just a fluctuation," Plazas Malagón explained. "In addition to studying dark energy, LSST will allow us to test the standard model of cosmology in other ways—examining the cold dark matter and dark energy hypotheses in the context of alternative models, including modified theories of gravity." Luz Ángela García Peñaloza is a cosmologist in Bogotá, Colombia, specializing in dark energy. She explained why she is so excited about Rubin, its first images, and its ongoing mission. "Rubin's first image release is an incredible milestone for the astronomical community. This observatory will cover the largest patch of the sky ever, capturing the light of approximately 20 billion galaxies. Rubin (or LSST) is not only an impressive telescope that will complement the cosmic cartography we are doing with other galaxy surveys, but also a fantastic piece of engineering that will be online for the next 10 years. We don't know yet what kind of images they will release on Monday, but I'm looking forward to seeing a deep field with tens of thousands of galaxies and stars. Remarkably, Vera Rubin is going to observe many, many galaxies in one night; thus, I expect to see beautiful images of the sky. Rubin will help us constrain the Large Scale Structure of the universe and, along the same lines, the nature and dynamics of dark energy." While Rubin will excel at studying galaxies en masse, some scientists will be interested in using its detailed view to look at what lies between those galaxies, namely, faint intracuster light. "These processes are linked to the formation of clusters of galaxies, which are the largest structures bound by gravity in the universe," Mireia Montes is a Ramón y Cajal Fellow at the Institute of Space Sciences (ICE-CSIC), told "Our understanding of the processes that form intracluster light is limited by small datasets. With Rubin, however, we will finally have the depth and numbers required to understand this light much better." Montes added that the filters employed by Rubin will enable astronomers to determine the type of stars between galaxies that give rise to intracluster light. That should then lead to the revelation of the origins of these "orphan" stars and how they came to drift between galaxies. Rubin may also excel in spotting another type of faint stellar outcast, so-called "failed stars" or brown dwarfs. These are bodies that form like stars from a collapsing cloud of gas and dust, but fail to gather enough mass to trigger the nuclear fusion of hydrogen to helium in their cores, the process that defines what a main sequence star infrared vision of Rubin's Simonyi Survey Telescope combined with its wide field of view and ability to see deep into space, will make it the perfect instrument for discovering faint, infrared-emitting objects like brown dwarfs. In fact, researchers have predicted that Rubin could detect thousands of brown dwarfs in the Milky Way, increasing our catalog of these "failed stars" by 20 times. That could help us better understand the mass limit at which a star "succeeds" and becomes a star rather than a brown dwarf, and thus how our galaxy took shape. Giuseppe Donatiello is an amateur astronomer from Italy who, thus far, has discovered a staggering 11 new dwarf galaxies in the local neighborhood of the Milky Way."Thanks to deep surveys, important discoveries have come in the Local Group, in particular, bizarre and decidedly unconventional objects have emerged. Rubin will certainly bring other similar discoveries, pushing their detection further," Donatiello said."The ability to go very deep will allow us to better define the timing in cosmic evolution, from the first stars to the current galaxies. Having such an instrument at our disposal does not limit the possibilities of observation, and we must have an open mind to anything new."Nature is more imaginative than we are!" This cursory list above is far from the extent of the phenomena that will be investigated by Rubin as it conducts the LSST. "There will be major improvements in almost every area of astronomy," Montes said. "Understanding better our own Milky Way, the evolution of galaxies, finding more low-mass galaxies that will allow us to understand better how galaxy formation occurs at those masses, mapping the mass of our universe, and therefore understanding better our universe." Plazas Malagón added that some of the other key questions the groundbreaking observatory could answer include: Are there undiscovered planets in the outer solar system (e.g., Planet Nine or Planet X)? What explosive and transient events occur in the universe? How do stars evolve and die? What are the electromagnetic counterparts to gravitational wave and neutrino events? What is the structure of the Milky Way's halo, disk, and bulge? What is the local galactic neighborhood like? Are there hazardous asteroids or comets that could impact Earth? Phew! Little wonder scientists (and are excited! Related Stories: — How the Rubin observatory could detect thousands of 'failed stars' — World's largest digital camera to help new Vera Rubin Observatory make a 'time-lapse record of the universe' (video) — Rubin Observatory aces 1st image tests, gets ready to use world's largest digital camera "I'm thrilled to see what the scientific community will do with this data," Alejandro Plazas concluded. "I'm especially excited about the new questions that will emerge — questions we haven't even imagined yet. We've built a discovery machine, and that's incredibly exciting to me. "One of the most exciting aspects is the unexpected discoveries that lie ahead!"

Tiny galaxies may have helped our universe out of its dark ages, JWST finds
Tiny galaxies may have helped our universe out of its dark ages, JWST finds

Yahoo

time2 days ago

  • Yahoo

Tiny galaxies may have helped our universe out of its dark ages, JWST finds

When you buy through links on our articles, Future and its syndication partners may earn a commission. Evidence continues to assemble that dwarf galaxies played a larger role in shaping the early universe than previously thought. Astronomers analyzing data from the James Webb Space Telescope (JWST) have uncovered a population of tiny, energetic galaxies that may have been key players in clearing the cosmic fog that shrouded the universe after the Big Bang. "You don't necessarily need to look for more exotic features," Isak Wold, an assistant research scientist at the Catholic University of America in Washington D.C., told reporters during the 246th meeting of the American Astronomical Society in Alaska. "These tiny but numerous galaxies could produce all the light needed for reionization." About 380,000 years after the Big Bang, the universe cooled enough for charged particles to combine into neutral hydrogen atoms, creating a thick, light-absorbing fog, an era known as the cosmic dark ages. It wasn't until several hundred million years later, with the birth of the first stars and galaxies, that intense ultraviolet (UV) radiation began reionizing this primordial hydrogen. That process gradually cleared the dense fog, allowing starlight to travel freely through space and illuminating the cosmos for the first time. For decades, astronomers have debated what triggered this dramatic transformation. The leading candidates included massive galaxies, quasars powered by black holes, and small, low-mass galaxies. New data from the JWST now points strongly to the smallest contenders, suggesting these tiny galaxies acted like cosmic flashlights lighting up the early universe. To identify these early galaxies, Wold and his colleagues focused on a massive galaxy cluster called Abell 2744, or Pandora's Cluster, located about 4 billion light-years away in the constellation Sculptor. The immense gravity of this cluster acts as a natural magnifying glass, bending and amplifying light coming from much more distant, ancient galaxies behind it. Tapping into this quirk of nature, combined with the JWST's powerful instruments, the researchers peered nearly 13 billion years back in time. Using the JWST's Near-Infrared Camera (NIRCam) and Near-Infrared Spectrograph (NIRSpec), the team searched for a specific green emission line from doubly ionized oxygen, a hallmark of intense star formation. This light was originally emitted in the visible range but was stretched into the infrared as it traveled through the expanding universe, according to a NASA statement. The search yielded 83 tiny, starburst galaxies, all vigorously forming stars when the universe was just 800 million years old, around 6% of its current age. "Our analysis [...] shows they existed in sufficient numbers and packed enough ultraviolet power to drive this cosmic renovation," Wold said in the statement. Today, similar primitive galaxies, such as so-called "green pea" galaxies, are rare but known to release roughly 25% of their ionizing UV radiation into surrounding space. If early galaxies functioned in the same way, Wold said, they would have generated enough light to reionize the hydrogen fog and make the universe transparent. "When it comes to producing ultraviolet light, these small galaxies punch well above their weight," he said in the statement.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store