
NASA spacecraft around the moon photographs the crash site of a Japanese company's lunar lander
CAPE CANAVERAL, Fla. (AP) — A NASA spacecraft around the moon has photographed the crash site of a Japanese company's lunar lander.
NASA released the pictures Friday, two weeks after ispace's lander slammed into the moon.
The images show a dark smudge where the lander, named Resilience, and its mini rover crashed into Mare Frigoris or Sea of Cold, a volcanic region in the moon's far north. A faint halo around the area was formed by the lunar dirt kicked up by the impact.
NASA's Lunar Reconnaissance Orbiter captured the scene last week.
The crash was the second failure in two years for Tokyo-based ispace. Company officials plan to hold a news conference next week to explain what doomed the latest mission, launched from Cape Canaveral in January.
___
The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
2 hours ago
- Yahoo
Strange signals detected from Antarctic ice seem to defy laws of physics. Scientists are searching for an answer
Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more. Scientists are trying to solve a decade-long mystery by determining the identity of anomalous signals detected from below ice in Antarctica. The strange radio waves emerged during a search for another unusual phenomenon: high-energy cosmic particles known as neutrinos. Arriving at Earth from the far reaches of the cosmos, neutrinos are often called 'ghostly' because they are extremely volatile, or vaporous, and can go through any kind of matter without changing. Over the past decade, researchers have conducted multiple experiments using vast expanses of water and ice that are designed to search for neutrinos, which could shed light on mysterious cosmic rays, the most highly energetic particles in the universe. One of these projects was NASA's Antarctic Impulsive Transient Antenna, or ANITA, experiment, which flew balloons carrying instruments above Antarctica between 2006 and 2016. It was during this hunt that ANITA picked up anomalous radio waves that didn't seem to be neutrinos. The signals came from below the horizon, suggesting they had passed through thousands of miles of rock before reaching the detector. But the radio waves should have been absorbed by the rock. The ANITA team believed these anomalous signals could not be explained by the current understanding of particle physics. Follow-up observations and analyses with other instruments, including one recently conducted by the Pierre Auger Observatory in Argentina, have not been able to find the same signals. The results of the Pierre Auger Collaboration were published in the journal Physical Review Letters in March. The origin of the anomalous signals remains unclear, said study coauthor Stephanie Wissel, associate professor of physics, astronomy and astrophysics at the Pennsylvania State University. 'Our new study indicates that such (signals) have not been seen by an experiment … like the Pierre Auger Observatory,' Wissel said. 'So, it does not indicate that there is new physics, but rather more information to add to the story.' Larger, more sensitive detectors may be able to solve the mystery, or ultimately prove whether the anomalous signals were a fluke, while continuing the search for enigmatic neutrinos and their sources, scientists say. Detecting neutrinos on Earth allows researchers to trace them back to their sources, which scientists believe are primarily cosmic rays that strike our planet's atmosphere. The most highly energetic particles in the universe, cosmic rays are made up mostly of protons or atomic nuclei, and they are unleashed across the universe because whatever produces them is such a powerful particle accelerator that it dwarfs the capabilities of the Large Hadron Collider. Neutrinos could help astronomers better understand cosmic rays and what launches them across the cosmos. But neutrinos are difficult to find because they have almost no mass and can pass through the most extreme environments, like stars and entire galaxies, unchanged. They do, however, interact with water and ice. ANITA was designed to search for the highest energy neutrinos in the universe, at higher energies than have yet been detected, said Justin Vandenbroucke, an associate professor of physics at the University of Wisconsin, Madison. The experiment's radio antennae search for a short pulse of radio waves produced when a neutrino collides with an atom in the Antarctic ice, leading to a shower of lower-energy particles, he said. During its flights, ANITA found high-energy fountains of particles coming from the ice, a kind of upside-down shower of cosmic rays. The detector is also sensitive to ultrahigh energy cosmic rays that rain down on Earth and create a radio burst that acts like a flashlight beam of radio waves. When ANITA watches a cosmic ray, the flashlight beam is really a burst of radio waves one-billionth of a second long that can be mapped like a wave to show how it reflects off the ice. Twice in their data from ANITA flights, the experiment's original team spotted signals coming up through the ice at a much sharper angle than ever predicted by any models, making it impossible to trace the signals to their original sources. 'The radio waves that we detected nearly a decade ago were at really steep angles, like 30 degrees below the surface of the ice,' Wissel said. Neutrinos can travel through a lot of matter, but not all the way through the Earth, Vandenbroucke said. 'They are expected to arrive from slightly below the horizon, where there is not much Earth for them to be absorbed,' he wrote in an email. 'The ANITA anomalous events are intriguing because they appear to come from well below the horizon, so the neutrinos would have to travel through much of the Earth. This is not possible according to the Standard Model of particle physics.' The Pierre Auger Collaboration, which includes hundreds of scientists around the world, analyzed more than a decade's worth of data to try to understand the anomalous signals detected by ANITA. The team also used their observatory to try to find the same signals. The Auger Observatory is a hybrid detector that uses two methods to find and study cosmic rays. One method relies on finding high-energy particles as they interact with water in tanks on Earth's surface, and the other tracks potential interactions with ultraviolet light high in our planet's atmosphere. 'The Auger Observatory uses a very different technique to observe ultrahigh energy cosmic ray air showers, using the secondary glow of charged particles as they traverse the atmosphere to determine the direction of the cosmic ray that initiated it,' said Peter Gorham, a professor of physics at the University of Hawaii at Mānoa. 'By using computer simulations of what such a shower of particles would look like if it had behaved like the ANITA anomalous events, they are able to generate a kind of template for similar events and then search their data to see if anything like that appears.' Gorham, who was not involved with the new research, designed the ANITA experiment and has conducted other research to understand more about the anomalous signals. While the Auger Observatory was designed to measure downward-going particle showers produced in the atmosphere by ultrahigh-energy cosmic rays, the team redesigned their data analysis to search for upward-going air showers, Vandenbroucke said. Vandenbroucke did not work on the new study, but he peer-reviewed it prior to publication. 'Auger has an enormous collecting area for such events, larger than ANITA,' he said. 'If the ANITA anomalous events are produced by any particle traveling through the Earth and then producing upward-going showers, then Auger should have detected many of them, and it did not.' A separate follow-up study using the IceCube Experiment, which has sensors embedded deep in the Antarctic ice, also searched for the anomalous signals. 'Because IceCube is very sensitive, if the ANITA anomalous events were neutrinos then we would have detected them,' wrote Vandenbroucke, who served as colead of the IceCube Neutrino Sources working group between 2019 and 2022. 'It's an interesting problem because we still don't actually have an explanation for what those anomalies are, but what we do know is that they're most likely not representing neutrinos,' Wissel said. Oddly enough, a different kind of neutrino, called a tau neutrino, is one hypothesis that some scientists have put forth as the cause of the anomalous signals. Tau neutrinos can regenerate. When they decay at high energies, they produce another tau neutrino, as well as a particle called a tau lepton — similar to an electron, but much heavier. But what makes the tau neutrino scenario very unlikely is the steepness of the angle connected to the signal, Wissel said. 'You expect all these tau neutrinos to be very, very close to the horizon, like maybe one to five degrees below the horizon,' Wissel said. 'These are 30 degrees below the horizon. There's just too much material. They really would actually lose quite a bit of energy and not be detectable.' At the end of the day, Gorham and the other scientists have no idea what the origin of the anomalous ANITA events are. So far, no interpretations match up with the signals, which is what keeps drawing scientists back to try to solve the mystery. The answer may be in sight, however. Wissel is also working on a new detector, the Payload for Ultra-High Energy Observations or PUEO, that will fly over Antarctica for a month beginning in December. Larger and 10 times more sensitive than ANITA, PUEO could reveal more information on what is causing the anomalous signals detected by ANITA, Wissel said. 'Right now, it's one of these long-standing mysteries,' Wissel said. 'I'm excited that when we fly PUEO, we'll have better sensitivity. In principle, we should be able to better understand these anomalies which will go a long way to understanding our backgrounds and ultimately detecting neutrinos in the future.' Gorham said that PUEO, an acronym that references the Hawaiian owl, should have the sensitivity to capture many anomalous signals and help scientists find an answer. 'Sometimes you just have to go back to the drawing board and really figure out what these things are,' Wissel said. 'The most likely scenario is that it's some mundane physics that can be explained, but we're sort of knocking on all the doors to try to figure out what those are.'
Yahoo
3 hours ago
- Yahoo
Satellites are polluting Earth's atmosphere with heavy metals. Could refueling them in orbit help?
When you buy through links on our articles, Future and its syndication partners may earn a commission. The world at large is working to stop the fast-progressing degradation of Earth's environment. In the space sector, however, one-use-only products still reign supreme. The advent of megaconstellations has, in fact, accelerated the rate at which the space industry burns through resources, shifting from big satellites with decades-long lifespans to cheaper birds designed to expire within a few short years. The disposable approach worries some researchers, as too much aluminum is burning up in the atmosphere these days, threatening to cause a new kind of environmental disaster in the decades to come. But what can we do? Should we roll back the space revolution and put a cap on what we can do in space? Or could a circular economy, life extension, recycling and reuse be the solution to the space industry's dirty side effects? Proponents of in-orbit servicing and refueling laud the technology's potential. But most analysts remain cautious: Without strict environmental regulations, the expected cost of in-orbit servicing may not entice satellite operators to switch to reusable technology en masse. Dave Barnhart, chief executive officer of the California-based aerospace company Arkisys, first began developing concepts of recyclable satellite technology some 15 years ago as part of a project he oversaw at DARPA (the Defense Advanced Research Projects Agency). He and his colleagues investigated how to set up a satellite recycling facility in geostationary orbit — the region about 22,000 miles (36,000 kilometers) above Earth's surface where satellites appear fixed above one spot above the equator. "We wanted to know whether we can use parts from old geo satellites to recreate new ones, because the mass is already there," Barnhart told The geostationary ring is home to some of the largest and most expensive satellites. On top of that, the long distance between Earth and this orbit makes geo missions inherently costly, as they require the most powerful rockets with a lot of fuel to reach their destination. Yet, Arkisys, the company Barnhart cofounded in 2015, is focusing on low Earth orbit (LEO) — the buzzing region closest to Earth up to altitudes of about 1,200 miles (2,000 km). Arkisyshopes to set up an in-orbit servicing and refueling depot called the Port in LEO. The main goal is to spearhead a green revolution in this region, which gives rise to thousands of tons of dangerous space debris every year. "To date, everything we have ever designed to go into space has been one mission, one life," Barnhart told "It's sort of crazy. Every other domain on Earth, we maintain, we sustain, we grow. Not in space." In 2023, Arkisys secured a $1.6 million deal from the U.S. Space Force to test satellite assembly in orbit using the Port demo module — a basic building block of a scalable orbiting garage and gas station. The company wants to launch the first component of this orbital depot next year — a last-mile transportation device called the Cutter, which is designed to help satellites to dock with the garage. In 2027, the main Port module, a hexagonal structure about 9 feet (3 meters) wide, will join the Cutter in orbit to test how the mechanical interfaces of the two work together in space. The Port, in addition to serving as a fuel depot, will arrive with a supply of components and payloads that could be attached to worn-out satellites to give them a new lease on life. "Today, everything on a satellite is done on the ground, and the satellite is launched with an end date," Barnhart said. "We want to shift that to allow extensions of both — life and business — post-launch. We want to be able to add new revenue streams post-launch. You can do that if you can add something, change something in orbit, or even sell that satellite to somebody else who could make it part of a larger platform." Cameras or antennas could be replaced with more powerful ones once those get developed, worn-out batteries could be swapped for brand-new ones, and fuel tanks would get refilled. It all makes sense on paper, but Dafni Christodoulopoulou, space industry analyst at the consultancy company Analysis Mason, warns that whether satellite operators would be inclined to ditch their disposable ways will come down to the cost of the in-orbit maintenance services. LEO is currently dominated by small, relatively cheap satellites, she says, which can be replaced more cheaply than they can be serviced and maintained. "Right now, we expect in-orbit services to come at a cost that might be quite high for operators of small satellites," Christodoulopoulou told "The operators might not be interested in those services, because the price of building a new satellite might not be higher than that of a servicing mission." Barnhart agrees that the fledgling in-orbit servicing industry is likely to face resistance not just from operators but also from satellite manufacturers, who might feel threatened by the idea of reusability and life extension. "Every time you want to make a big shift like this, it's going to be a threat," Barnhart said. "Satellite manufacturers make money by building more satellites to throw away. It might take some time for them to see that by fitting satellites with interfaces that allow them to be serviced, they could actually add some cool functionality to them after launch." Related stories: — Kessler Syndrome and the space debris problem — Pollution from rocket launches and burning satellites could cause the next environmental emergency — 2 private satellites undock after pioneering life-extension mission Still, Christodoulopoulou thinks that in-orbit servicing will eventually make a difference to how things are done in space, and also to the state of the orbital environment. "The number of satellite launches is not expected to go down, so there will be a high need for constellation management, flexibility, disposal and life extension," she said. "I think in-orbit services can definitely help prevent the buildup of space debris and maintain long-term sustainability in orbit." The U.S. government certainly appears to think that life extension is the way forward. In addition to funding the Arkisys experiment, the Space Force also funds the Tetra-5 and Tetra-6 missions to test in-orbit refueling technologies in space. The two missions, designed to test hardware developed by Orbit Fab, Astroscale and Northrop Grumman, are set to launch in 2026 and 2027, respectively. In addition, intensifying geopolitical tensions are increasing the need for quick deployment of new systems in space, which, Barnhart says, could be more speedily addressed with servicing systems such as the Port, than by building new spacecraft from scratch on Earth. "If there is a new threat that has been identified, you might need a new type of sensor or a new payload to observe it," Barnhart said. "If we can augment the satellites that the government has already put up and provide them with a new capability, a new sensor, we can address those threats much faster." Christodoulopoulou thinks that new regulations designed to protect the environment and curb the air pollution related to satellite reentries could further help move the needle toward a less throwaway culture in space utilization. "There need to be a few changes," Christodoulopoulou said. "There needs to be more awareness among satellite operators to understand that in-orbit servicing offers a value in the long term. But also on the government side, there need to be more regulations to support the in-orbit servicing providers."
Yahoo
3 hours ago
- Yahoo
Elon Musk trades threats with Trump: What it could mean for SpaceX, Starship in Texas
When President Donald Trump took office in January, he began offering plenty of signs that his goals for U.S. spaceflight aligned closely with those of billionaire tech mogul Elon Musk. Now those goals, which included making reaching Mars during Trump's second term a top priority, appear to be up in the air with the increasingly volatile fallout between two of the world's most powerful men. As insults have turned to threats, Trump has suggested he'd hit Musk where it could hurt most: His wallet. Musk's SpaceX has spent years positioning itself at the center of American civil and military spaceflight – a profitable relationship that has made the company's founder incredibly wealthy. In response, Musk has floated – and then retracted – the idea of decommissioning a SpaceX vehicle critical to NASA's spaceflight program. Serious threats, or empty words? That remains to be seen as Musk and Trump reportedly consider a détente. In the meantime, here's what to know about what's at stake if the U.S. government's relationship with SpaceX were to crumble: U.S. spaceflight: Dozens of NASA space missions could be axed under Trump's budget The feud between Trump and his former top adviser escalated in a dramatic fashion when the president threatened to cut off the taxpayer dollars that have fueled Elon Musk's businesses, including SpaceX. "The easiest way to save money in our Budget, Billions and Billions of Dollars, is to terminate Elon's Governmental Subsidies and Contracts," Trump said in a post on his social media platform. "I was always surprised that Biden didn't do it!" In all, Musk and his businesses have received at least $38 billion in government contracts, loans, subsidies and tax credits, a Washington Post analysis found. With SpaceX as the fulcrum of much of the U.S. government's spaceflight programs, parting ways with the commercial company would leave a void that would be hard to fill. But NASA Press Secretary Bethany Stevens said in a post on social media site X that 'NASA will continue to execute upon the President's vision for the future of space.' 'We will continue to work with our industry partners to ensure the President's objectives in space are met,' Stevens wrote. Elon Musk, the world's richest man, founded SpaceX, in 2002. In July 2024, Musk announced his intentions to move his company, as well as social media platform X's headquarters, from California to Texas. The move was in response to his personal frustrations over a public school policy in California regarding transgender students. Now, the commercial spaceflight company is headquartered at Starbase in South Texas about 180 miles south of Corpus Christi. The site, which is where SpaceX has been conducting routine flight tests of its 400-foot megarocket known as Starship, was recently voted by residents to become its own city. SpaceX conducts many of its own rocket launches, most using the Falcon 9 rocket, from both California and Florida. That includes a regular cadence of deliveries of Starlink internet satellites into orbit, and occasional privately-funded commercial crewed missions on the Dragon. The most recent of SpaceX's private human spaceflights, a mission known as Fram2, took place in April. SpaceX was also famously involved in funding and operating the headline-grabbing Polaris Dawn crewed commercial mission in September 2024. SpaceX benefits from billions of dollars in contracts from NASA and the Department of Defense by providing launch services for classified satellites and other payloads. Gwynne Shotwell, CEO of SpaceX, has said the company has about $22 billion in government contracts, according to Reuters. The vast majority of that, about $15 billion, is derived from NASA. SpaceX's famous two-stage Falcon 9 rocket ‒ one of the world's most active ‒ is routinely the rocket of choice to get many NASA missions off the ground. For instance, the rocket is due in the days ahead to help propel a four-person crew of private astronauts to the International Space Station for a venture with NASA known as Axiom Mission 4. NASA also has plans to use SpaceX's Starship in its Artemis lunar missions to ferry astronauts aboard the Orion capsule from orbit to the moon's surface. The rocket, which is in development, has yet to reach orbit in any of its nine flight tests beginning in April 2023. SpaceX's Dragon capsule is also a famous vehicle that is widely used for a variety of spaceflights. The capsule, which sits atop the Falcon 9 for launches to orbit, is capable of transporting both NASA astronauts and cargo to the space station. Under NASA's commercial crew program, the U.S. space agency has been paying SpaceX for years to conduct routine spaceflights to the International Space Station using the company's own launch vehicles. The first of SpaceX's Crew missions ferrying astronauts to the orbital outpost on the Dragon began in 2020, with the tenth and most recent contingent reaching the station in March for about a six-month stay. Standing nearly 27 feet tall and about 13 feet wide, Dragon capsules can carry up to seven astronauts into orbit, though most of SpaceX's Crew missions feature a crew of four. The Dragon spacecraft also was the vehicle NASA selected to bring home the two NASA astronauts who rode the doomed Boeing Starliner capsule to the space station in June 2024. Certifying the Starliner capsule for operation would give NASA a second vehicle in addition to Dragon for regular spaceflights to orbit. Because Boeing is still developing its Starliner capsule, Dragon is the only U.S. vehicle capable of carrying astronauts to and from the space station. It's also one of four vehicles contracted to transport cargo and other supplies to the orbital laboratory. For that reason, Musk's threat Thursday, June 5 to decommission the Dragon "immediately" would be a severe blow to NASA if he were to follow through on it. Musk, though, appears to already be backing off on the suggestion, which he made in response to Trump's own threats. In response to a user who advised Musk to "Cool off and take a step back for a couple days," Musk replied: 'Good advice. Ok, we won't decommission Dragon.' Seven astronauts are aboard the International Space Station, including three Americans. Four of the astronauts rode a SpaceX Dragon to the station for a mission known as Crew-10, while the remaining three launched on a Russian Soyuz spacecraft. Contributing: Joey Garrison, Josh Meyer, USA TODAY; Reuters Eric Lagatta is the Space Connect reporter for the USA TODAY Network. Reach him at elagatta@ This article originally appeared on Corpus Christi Caller Times: SpaceX at center of Trump, Musk feud: What that could mean for Texas