logo
3 Animals You Didn't Know Went To Space — One Might Still Be Out There, Waiting To Wake Up

3 Animals You Didn't Know Went To Space — One Might Still Be Out There, Waiting To Wake Up

Forbes19-04-2025

Not every space traveler has worn a suit or walked upright. From monkeys to microscopic marvels, ... More these species show how far life on Earth has reached.
You've seen the headlines. The James Webb Space Telescope detected methane and carbon dioxide on a distant exoplanet, stirring cautious excitement about the possibility of life beyond Earth. It's the strongest signal yet. But for now, it remains just a theory.
What's not theory is this: Life from Earth has already left the planet. And not just humans and dogs, either. Over the decades, we've launched a surprising cast of living organisms into space, from stray cats to microscopic indestructible micro-animals.
Their time out there may have been brief, but they crossed a boundary few lifeforms never will. Some may never return. Here are three you probably didn't expect.
There's a general misconception that Laika, the Soviet space dog, was the first animal in space. But the truth is quieter and smaller. On February 20, 1947, the United States launched a group of fruit flies aboard a captured German V-2 rocket. This swarm went down in history as the first living organisms from Earth to reach space, beating both dogs and humans by years.
The flies were recovered alive after a successful parachute descent, marking the silent start of life's journey off-planet. For context, Laika flew aboard Sputnik 2 in 1957, a full decade later. And Yuri Gagarin, the first human in space, followed in 1961.
Fruit flies (Drosophila melanogaster) have long been model organisms in science — small, easy to breed and genetically well-understood, even in the 1940s. Their short life cycles make them ideal for studying generational effects, and they require minimal life support systems, making them perfect candidates for early, high-risk flights.
The fruit fly continues to be widely used for biological research in genetics, physiology, microbial ... More pathogenesis and life history evolution.
More importantly, fruit flies are sensitive to radiation and share some fundamental biological responses with us, making them valuable analogs for studying the genetic effects of cosmic exposure. Researchers were especially interested in how cosmic rays, a largely untested threat at the time, would affect living tissue.
Under the microscope, they look almost like animated plush toys — slow-moving, water-bloated and oddly adorable. But tardigrades, also known as water bears or moss piglets, are among the toughest survivors evolution has ever carved out. And in 2007, they became the first animals known to survive direct exposure to the vacuum and radiation of space.
Less than a millimeter long, these water-dwelling, eight-legged micro-animals can endure boiling ... More heat, freezing cold, crushing pressure and radiation.
Sent into low Earth orbit aboard the European Space Agency's FOTON-M3 mission, dehydrated tardigrades endured ten days in outer space. When rehydrated back on Earth, most of the specimens protected from UV radiation came back to life. Some even went on to reproduce.
Their resilience comes from cryptobiosis, a kind of biological stasis in which they shut down nearly all activity and dry into a glass-like shell. In this 'tun state,' they can survive extreme cold, searing heat and even radiation.
And Earth's biological signature may still be out there. Thousands of tardigrades were aboard the Beresheet lander that crashed on the Moon in 2019. While the odds of survival are slim, and reactivation impossible without water, some may be lying dormant on the lunar surface, frozen in time.
On October 18, 1963, France launched a black-and-white stray cat, later named Félicette, into suborbital space aboard a Véronique AGI 47 sounding rocket. She was one of 14 female cats trained for spaceflight by the French Centre d'Enseignement et de Recherches de Médecine Aéronautique (CERMA).
The cats underwent rigorous training, including exposure to intense G-forces and confinement, to prepare for the mission. Félicette's short flight reached an altitude of 157 kilometers, 57 past the Kármán line, during which she experienced about five minutes of weightlessness. Electrodes implanted in her skull transmitted neurological data back to Earth, providing insights into the effects of space travel on living organisms.
Remarkably, she survived the flight and was safely recovered. Soon after, she was euthanized so scientists could learn more from her autopsy. Despite her contributions, Félicette's story remained largely unknown for decades. While other animal astronauts like Laika became celebrated figures, Félicette faded into obscurity. It wasn't until 2019 that she received formal recognition with a bronze statue honoring her contributions to space exploration.
Félicette eventually was immortalized with a bronze statue depicting her perched atop Earth, gazing ... More skyward. This was unveiled at the International Space University in Strasbourg, France, and honors her unique place in space exploration history .
After seeing just how far life from Earth has traveled, how connected do you feel to the life still here? Take the Connectedness to Nature Scale and discover your link to the wild.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

It turns out weather on other planets is a lot like on Earth
It turns out weather on other planets is a lot like on Earth

Boston Globe

time8 hours ago

  • Boston Globe

It turns out weather on other planets is a lot like on Earth

Related : Advertisement But by leveraging the sheer amount of knowledge and data about our planet, scientists can get a head start on understanding the inner workings of storms or vortexes on other planetary bodies. In some cases, the models provide almost everything we know about some otherworldly atmospheric processes. 'Our planetary atmosphere models are derived almost exclusively from these Earth models,' said Scot Rafkin, a planetary meteorologist at the Southwest Research Institute. 'Studying the weather on other planets helps us with Earth and vice versa.' Satellite photo of the Baltic Sea surrounding Gotland, Sweden, with algae bloom swirling in the water. The churning clouds near Jupiter's pole appear like ocean currents on Earth — as if you're looking at small edges and meandering fronts in the Baltic Sea. European Space Agency Vortexes on Jupiter If you looked at the churning clouds near Jupiter's pole, they appear like ocean currents on Earth - as if you're looking at small edges and meandering fronts in the Baltic Sea. 'This looks so much like turbulence I'm seeing in our own ocean. They must be covered by at least some similar dynamics,' Lia Siegelman, a physical oceanographer at Scripps Institution of Oceanography, recalled the first time she saw images of vortexes from NASA's Juno mission, which entered Jupiter's orbit in 2016. Advertisement Working with planetary scientists, she applied her understanding of the ocean physics on Earth to the gas giant in computer models. Whether it's in air or water on any planet, she found the laws of physics that govern turbulent fluids is the same (even though the vortex on Jupiter is about 10 times larger than one on Earth). When cyclones and anticyclones (which spin in the opposite direction) interact in the ocean, they create a boundary of different water masses and characteristics - known as a front. She and her colleagues found the same phenomenon occurs in cyclones at Jupiter's poles, showing similar swirls. 'By studying convection on Earth, we were also able to spot that phenomenon occurring on Jupiter,' Siegelman said, even though Jupiter has relatively little data compared to Earth. Related : She and her colleagues also found a pattern never seen on Earth before: a cluster of cyclones in a symmetrical, repeating pattern near the poles of Jupiter. These 'polar vortex crystals' were observed in 2016 and have remained in place since. Despite never seeing them on Earth, she and other planetary scientists collaborated to reproduce these swirls in computer models - relying on 'just very simple physics.' 'Planetary scientists use a lot of the weather models that have been developed to study either the ocean or the atmosphere,' Siegelman said. 'By just knowing so much about the ocean and the atmosphere, we can just guide our analysis.' Advertisement This NASA handout photo shows beds of sandstone inclined to the southwest toward Mount Sharp and away from the Gale Crater rim on Mars. HANDOUT Dust storms on Mars If you plan to move to Mars, be prepared to face the dust storms. At their most intense, they can engulf the entire planet and last from days to months. The dirt can block sunlight and coat infrastructure. While scientists have observed many of these storms, they still don't know how to predict them. Dust storms operate similarly on Earth and Mars. Dust is lifted and heated, and rises like a hot-air balloon, Rafkin said. The rising air will suck in air from below to replace it. Air pressure drops near the surface, sucking in more wind that lifts the dust. As Mars spins, the angular momentum causes the dust storm to rotate. In reality, Martian dust storms are more similar to hurricanes on Earth in terms of their scale and circulation, said planetary scientist Claire Newman. She said the sources are different (Mars is a dust planet, whereas Earth is a water planet), but they have a similar effect on temperature and winds. But it's still unknown how these Martian dust storms form. On Earth, a winter storm with a cold front can lift the dust; scientists sometimes see similar dust lifting along cold fronts on Mars, but many storms just seem to pop up. Related : To predict a dust storm, scientists need to understand the circulation patterns on Mars - forecasting the cold front that can lift the dust, for instance. But it's something researchers don't yet understand. Wind measurements are scarce on Mars, aside from a few scattered measurement sites on its surface. With adjustments, Earth-based models can simulate the conditions that can lead to the uplifting winds and dust storms. 'Almost everything that we know about the circulation patterns on Mars come from models,' said Rafkin, adding that scientists 'have effectively no observations of the movement of the air on Mars.' Advertisement In this photo, sand blowing off fields creates a dust storm near Morton, Texas, in May 2021. Dust storms operate similarly on Earth and Mars. Jude Smith/Associated Press The models currently serve as the best way to understand dust storms on the Red Planet, unless more dedicated studies and stations are added, similar to Earth. 'We're basically applying these models to try and get a sense of what the environment is,' said Newman, 'before we send robots or potentially people there.' Rain on Titan The second-largest moon in our solar system, Titan is the only other known world besides Earth that has standing bodies of rivers, lakes and seas on its surface - consisting of liquid methane instead of water. That's partly why some scientists think it could be a future home for Earthlings, if we can just figure out the 750-million-mile journey and learn how to survive the minus-179 degree Celsius surface temperatures. But how did those lakes and oceans fill up? Even though it rains methane, the precipitation on Titan is very similar to that on Earth, Rafkin said. On Earth, take a chunk of air with water vapor, cool it off and the air becomes saturated to form a cloud. Those small cloud droplets can bump into one another or take in more water vapor to grow bigger. But eventually, the water vapor starts to condense into a liquid and brings rain. We've seen this process take place on Earth both naturally in the atmosphere and in labs enough times to understand the physics. But limited observations on Titan - effectively only visiting its atmosphere a handful of times - have caused scientists to turn to models. Using the same underlying physics, scientists can model the cloud-making process on this foreign body. And, the modeled clouds look a lot like the few they have observed in real life on Titan. Advertisement This November 2015 composite image made available by NASA shows an infrared view of Saturn's moon, Titan, as seen by the Cassini spacecraft. Titan is the only other known world besides Earth that has standing bodies of rivers, lakes and seas on its surface. AP 'If we try to model them and we get clouds, but they look totally bizarre and different than what we're observing, then that's an indication that maybe we're not representing the cloud processes correctly,' Rafkin said. 'But as it turns out, for the most part, when we model these things, we can produce clouds that look reasonably close to what we've observed.' Because of its incredibly dense atmosphere, Titan has storm clouds - two to four times taller than those on Earth - that are able to produce feet of methane rain. While scientists haven't observed such huge volumes, they have modeled the deluges based on the surface darkening as a storm passed - similar to how rain on soil or pavement darkens the surface on Earth. It's still a mystery where the methane comes from. But at least we know to bring a very, very sturdy raincoat if we ever visit Titan.

A spinning universe could crack the mysteries of dark energy and our place in the multiverse
A spinning universe could crack the mysteries of dark energy and our place in the multiverse

Yahoo

time13 hours ago

  • Yahoo

A spinning universe could crack the mysteries of dark energy and our place in the multiverse

When you buy through links on our articles, Future and its syndication partners may earn a commission. What is dark energy? Why does dark energy seem to be weakening? Is our universe part of a larger multiverse? What lies beyond the boundary of a black hole?The universe seems to be rotating, and if that is the case, then this could have major ramifications for some of the biggest questions in science, including those above. That's according to Polish theoretical physicist Nikodem Poplawski of the University of New Haven, who is well-known for his theory that black holes act as doorways to other universes. "Dark energy is one of the most intriguing mysteries of the universe. Many researchers have tried to explain it by modifying equations of general relativity or suggesting the existence of new fields that could accelerate the universe's expansion," Poplawski told "It would be amazing if a simple rotation of the universe was the origin of dark energy, especially that it predicts its weakening." Evidence that the universe is rotating was recently delivered by the James Webb Space Telescope (JWST), which found that two-thirds of galaxies are rotating in the same direction. This suggests a lack of randomness and a preferred direction for cosmic rotation. Additionally, Poplawski pointed out that other astronomical data seem to show that the angle between the most likely axis of the spinning galaxies and the axis of the bulk flow of nearby galaxy clusters is 98 degrees, meaning they are nearly perpendicular in relation to each other. That is something that is in accordance with the hypothesis that the universe is rotating. To understand why a rotating universe implies more than one universe, Poplawski refers to "frames of reference." These are sets of coordinate systems that are integral to physics, which allow motion and rest to be measured. Imagine two scientists, Terra and Stella. Each is in their own frame of reference, but Terra on Earth, Stella in a spacecraft traveling past our planet. Terra sees Stella's frame of reference (the spacecraft) moving in relation to her own (the Earth), which is at rest. Stella, meanwhile, sees her frame of reference at rest while it is Terra's frame of reference in motion as the Earth races pointed out that if the universe is rotating, then its frame of reference is rotating, and that only makes sense if it is rotating in relation to at least one other frame of reference. "If the universe is rotating, it must rotate relative to some frame of reference corresponding to something bigger," he continued. "Therefore, the universe is not the only one; it is a part of a multiverse." For Poplawski, the simplest and most natural explanation of the origin of the rotation of the universe is black hole cosmology. Black hole cosmology suggests that every black hole creates a new baby universe on the other side of its event horizon, the one-way light-trapping surface that defines the outer boundary of a black hole. The theory replaces the central singularity at the heart of a black hole with "spacetime torsion" that gives rise to repulsive gravity that kick-starts the expansion of a new universe. "Because all black holes form from rotating objects, such as rotating stars or in the centers of rotating galaxies, they rotate too," Poplawski said. "The universe born in a rotating black hole inherits the axis of rotation of the black hole as its preferred axis." In other words, our universe may be spinning in a preferred direction because that is the way that the black hole it is sealed within is spinning. "A black hole becomes an Einstein-Rosen bridge or a 'wormhole' from the parent universe to the baby universe," Poplawski explained. "Observers in the new universe would see the other side of the parent black hole as a primordial white hole." In lieu of discovering a primordial white hole in our universe leading to our parent black hole and progenitor universe, the strongest evidence of this black hole cosmology is a preferred direction or "rotational asymmetry" in our universe. That can be seen in rotational asymmetry in the galaxies. "The motion of individual galaxies in that baby universe will be affected by the rotation of that universe," Poplawski said. "The galaxies will tend to align their axes of rotation with the preferred axis of the rotation of the universe, resulting in the rotation asymmetry, which can be observed."That's something astronomers are starting to course, that means that every black hole in our universe is a doorway to another baby cosmos. These infant universes are protected from investigation by the event horizon of their parent black holes, which prevents any signal from being received from the interior of a black a trip through this cosmic doorway would be impossible for a budding "multinaut" due to the immense gravity surrounding a black hole, which would give rise to tidal forces that would "spaghettify" such an intrepid explorer. Even if such a multinaut were to survive the journey, just as nothing can escape a black hole, nothing can enter a white hole, meaning there would be no return or opportunity to file a report! Even grimmer than this, there's no guarantee that the laws of physics are the same in a baby universe as their parent universe, meaning an unpredictable fate and potentially a messy death for a hardy multinaut able to brave a black hole doorway. Anyway, before we rush off to explore other universes, there are mysteries to be investigated right here in our own universe. At the forefront of these is the mysterious force of dark energy. Dark energy is a placeholder name given to whatever force is causing the universe to expand at an accelerating rate. Dark energy currently dominates the universe, accounting for 68% of the total cosmic matter-energy budget. This wasn't always the way, the universe's earliest epoch, it was dominated by the energy of the Big Bang, causing it to inflate. As the universe entered a matter-dominated epoch ruled by gravity, this inflation slowed to a near stop. This should have been it for the cosmos, but around 9 billion to 10 billion years after the Big Bang, the universe started to expand again, with this expansion accelerating, leading to the dark-energy dominated epoch. To understand why this is such a worrying puzzle, imagine giving a child on a swing a single push, watching their motion come to a halt, and then, for no discernible reason, they start swinging again, and this motion gets faster and faster. As if dark energy weren't strange enough already, recent results from the Dark Energy Spectroscopic Instrument (DESI) have indicated that this mysterious force is weakening. This is something that seemingly defies the standard model of cosmology or the Lambda Cold Dark Matter (LCDM) model, which relies on dark energy (represented by the cosmological constant or Lambda) being Poplawski theorizes that a spinning universe can both account for dark energy and explain why it is weakening. "Dark energy would emerge from the centrifugal force in the rotating universe on large scales," the theoretical physicist explained. "If the universe were flat, the centrifugal force would act only in directions perpendicular to the preferred axis." However, in Poplawski's black hole theory of cosmology, because the universe created by a black hole is closed, moving away in any direction would eventually lead to coming back from the opposite direction. That would mean the centrifugal force arising from a spinning universe becomes a force acting in all directions away from the universe's parent primordial white hole. "The magnitude of this force is proportional to the square of the angular velocity of the universe and the distance from the white hole," Poplawski said. "This relation takes the form of the force acting on a galaxy due to dark energy, which is proportional to the cosmological constant and the distance from the white hole. Therefore, the cosmological constant is proportional to the square of the angular velocity of the universe."But, how could this explain the DESI observations that seem to indicate that dark energy is getting weaker? "Because the angular momentum of the universe is conserved, it decreases as the universe expands," Poplawski said. "Consequently, the cosmological constant, which is the simplest explanation of dark energy, should also decrease with time. This result is consistent with recent observations by DESI." Related Stories: — Supermassive black holes in 'little red dot' galaxies are 1,000 times larger than they should be, and astronomers don't know why — 'Superhighways' connecting the cosmic web could unlock secrets about dark matter — How does the Cosmic Web connect Taylor Swift and the last line of your 'celestial address?'years To provide some further evidence of Poplawski's concept, more data on the bulk flow of galaxy clusters and on the asymmetry of galaxy rotation axes are needed. This would help further confirm that our universe is rotating. Additionally, more data regarding how dark energy depends on cosmic distances and the progression of time in our 13.7 billion-year-old cosmos could help validate whether the weakening of dark energy is related to the decreasing angular velocity of the universe. "The next step to advance these ideas is to determine the equation describing how the cosmological constant, generated by the angular velocity of the universe, decreases with time, and to compare this theoretical prediction with the observed decrease of dark energy," Poplawski concluded. "This research might involve searching for the metric describing an expanding and rotating universe."A pre-peer-reviewed version of Poplawski's research appears on the paper repository site arXiv.

Dog's ashes among dozens to rocket into orbit this weekend
Dog's ashes among dozens to rocket into orbit this weekend

New York Post

time15 hours ago

  • New York Post

Dog's ashes among dozens to rocket into orbit this weekend

Bone voyage! A beloved dog named Franz will take his final leap this weekend — into Earth's orbit. The yellow labrador's ashes will be on board the inaugural Perseverance Flight from Texas-based Celestis Inc., which is scheduled to launch around 5:30 p.m. Sunday from Vandenberg Space Force Base in Santa Barbara, CA. 4 Franz was like a sibling to Elizabeth Moore before he died at age 13 in October 2020. Celestis, Inc Carrying a total of 166 titanium and aluminum capsules, each about a quarter to a half-inch in size and filled with DNA or cremated remains, the 23-foot-tall SpaceX Falcon 9 rocket will take two trips around Earth's low orbit at a mind-boggling 17,000 mph. The space flight will last about three hours before the rocket — still carrying its priceless payload — re-enters the atmosphere and lands in the Pacific Ocean somewhere between Alaska and Hawaii, according to Celestis CEO and co-founder Charles Chafer. A recovery ship, which was already out at sea Friday in anticipation of the launch, 'will track the incoming rocket, hopefully get a visual on it, and then go pick it up out of the ocean,' Chafer explained. 4 The Texas-based company Celestis Inc.'s inaugural Perseverance Flight will take two trips around Earth's Lower Orbit after blastoff on Sunday. The capsules will first be transported to Germany, then, within two months, distributed back to the families, who each paid a whopping $3,500 to send their loved one to the stars. While the price to send Franz on the voyage was 'a lot more' than the pooch itself, his owner, Harvin Moore, said with a laugh, it was only fitting for the 'space-fanatic' Moore family to send the pup beyond the stratosphere. 'He was the best dog, just so soft and nice and loved hugs,' recalled Moore, 60, who lives in Dripping Springs, Texas, just outside Austin. 4 The Moore family can't wait to watch their beloved pooch go galactic. Celestis, Inc Franz, who was 13 when he died in October 2020, was more like a sibling than a pet to Moore's now 26-year-old daughter, Elizabeth, and son, Quinn, 21, he said. Now, the family can't wait to watch the good boy go galactic. 'The emotional power of being with a group of people who are celebrating the life of a loved one in this way … it's amazing. It's nothing we'll ever forget,' said Moore. 'It's just pure joy.' 4 The Perseverance Flight will carry a total of 166 titanium and aluminum capsules, ranging in size from a quarter to a half-inch, filled with DNA or cremated remains. Celestis, Inc 'Many people whose ashes and DNA are flying are people that always wanted to go to space in their lifetime but were never able to do that. It also helps families move from feelings of grief to joy,' Chafer said. The cremated remains of Wesley Dreyer — an aerospace engineer who helped investigate the cause of the Space Shuttle Challenger's shocking explosion after takeoff on Jan. 28, 1986 — will also be on board the Perseverance Flight, as well as DNA from a living, 3-year-old German boy.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store